成都创新互联网站制作重庆分公司

使用Python怎么对数据进行插值和下采样-创新互联

这篇文章给大家介绍使用Python怎么对数据进行插值和下采样,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。

创新互联建站专注于企业营销型网站、网站重做改版、泸水网站定制设计、自适应品牌网站建设、HTML5建站成都做商城网站、集团公司官网建设、外贸营销网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为泸水等各大城市提供网站开发制作服务。

使用Python进行插值非常方便,可以直接使用scipy中的interpolate

import numpy as np
x1 = np.linspace(1, 4096, 1024)
x_new = np.linspace(1, 4096, 4096)
from scipy import interpolate
tck = interpolate.splrep(x1, data)
y_bspline = interpolate.splev(x_new, tck)

其中y_bspline就是从1024插值得到的4096的数据

但是,scipy中好像并没有进行下采样的函数,嗯..难道是因为太过简单了么,不过好像用一个循环就可以完成,但如果把向量看成一个时间序列,使用pandas中的date_range模块也可以十分方便的以不同频率进行采样,并且,很多对文件的操作都是使用pandas操作的。

import pandas as pd
index = pd.date_range('1/1/2000', periods=4096, freq='T') #这个起始时间任意指定,freq为其频率
data = pd.read_table(filename, names=['feat'])
data.index = index
data_obj = data.resample('4T', label='right') #第一个为抽样频率,label表示左右开闭区间
data_new = data_new.asfreq()[0:]

因为data.resample返回的是一个 pandas.tseries.resample.DatetimeIndexResampler对象

所以想要获取其中的值可以通过 data_new.asfreq()[0:]获取

Python主要用来做什么

Python主要应用于:1、Web开发;2、数据科学研究;3、网络爬虫;4、嵌入式应用开发;5、游戏开发;6、桌面应用开发。

关于使用Python怎么对数据进行插值和下采样就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。


网站名称:使用Python怎么对数据进行插值和下采样-创新互联
路径分享:http://cxhlcq.com/article/ccdgsg.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部