低通滤波器实验代码,这是参考别人网上的代码,所以自己也分享一下,共同进步
创新互联建站服务项目包括贡井网站建设、贡井网站制作、贡井网页制作以及贡井网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,贡井网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到贡井省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!# -*- coding: utf-8 -*- import numpy as np from scipy.signal import butter, lfilter, freqz import matplotlib.pyplot as plt def butter_lowpass(cutoff, fs, order=5): nyq = 0.5 * fs normal_cutoff = cutoff / nyq b, a = butter(order, normal_cutoff, btype='low', analog=False) return b, a def butter_lowpass_filter(data, cutoff, fs, order=5): b, a = butter_lowpass(cutoff, fs, order=order) y = lfilter(b, a, data) return y # Filter requirements. order = 6 fs = 30.0 # sample rate, Hz cutoff = 3.667 # desired cutoff frequency of the filter, Hz # Get the filter coefficients so we can check its frequency response. b, a = butter_lowpass(cutoff, fs, order) # Plot the frequency response. w, h = freqz(b, a, worN=800) plt.subplot(2, 1, 1) plt.plot(0.5*fs*w/np.pi, np.abs(h), 'b') plt.plot(cutoff, 0.5*np.sqrt(2), 'ko') plt.axvline(cutoff, color='k') plt.xlim(0, 0.5*fs) plt.title("Lowpass Filter Frequency Response") plt.xlabel('Frequency [Hz]') plt.grid() # Demonstrate the use of the filter. # First make some data to be filtered. T = 5.0 # seconds n = int(T * fs) # total number of samples t = np.linspace(0, T, n, endpoint=False) # "Noisy" data. We want to recover the 1.2 Hz signal from this. data = np.sin(1.2*2*np.pi*t) + 1.5*np.cos(9*2*np.pi*t) + 0.5*np.sin(12.0*2*np.pi*t) # Filter the data, and plot both the original and filtered signals. y = butter_lowpass_filter(data, cutoff, fs, order) plt.subplot(2, 1, 2) plt.plot(t, data, 'b-', label='data') plt.plot(t, y, 'g-', linewidth=2, label='filtered data') plt.xlabel('Time [sec]') plt.grid() plt.legend() plt.subplots_adjust(hspace=0.35) plt.show()
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。