成都创新互联网站制作重庆分公司

利用pandas将非数值数据转换成数值的方式-创新互联

handle non numerical data

为达坂城等地区用户提供了全套网页设计制作服务,及达坂城网站建设行业解决方案。主营业务为成都做网站、网站设计、达坂城网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

举个例子,将性别属性男女转换成0-1,精通ML的小老弟们可以略过本文~~,

这里不考虑稀疏向量的使用,仅提供一些思路。本来想直接利用pandas的DataFrame.iloc加上for循环直接转换,但试过一遍之后,原数据并有改变。。。。蛋疼写了一个比较 菜的函数,如下。

# 非数值列处理函数
def handel_non_numerical_data(df,name): #----------------name是需要处理的列名称(str),暂不考虑列表
 nrows = len(df[name])  #----------------数据集的行数
 old_col = df.columns.tolist() #----------------初始的列名集合
 name_index = old_col.index(name) #---------要处理的列的在数据集中的索引值
 name_data = df[name].values.tolist()#-----------将要处理烦人列复制成一个列表
 df.drop([name],axis =1,inplace =True) 
 unique_kinds = set(name_data)
 convert_dict = {}; x = 0   #构造对应种类数值转化字典
 for i in unique_kinds:
 convert_dict[i] = x
 x += 1
 def convert(val):
 return convert_dict[val] 
 name_data = list(map(convert,name_data))#利用map函数直接迭代转化
 
 new_col = df.columns.tolist()
 new_col.insert(name_index,name)
 df.reindex(columns = new_col) #----------------重构数据的列
 df[name] = name_data

文章标题:利用pandas将非数值数据转换成数值的方式-创新互联
分享URL:http://cxhlcq.com/article/coiipd.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部