本教程介绍 Go 中多模块工作区的基础知识。使用多模块工作区,您可以告诉 Go 命令您正在同时在多个模块中编写代码,并轻松地在这些模块中构建和运行代码。
成都创新互联公司长期为近1000家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为勐海企业提供专业的做网站、网站建设,勐海网站改版等技术服务。拥有十年丰富建站经验和众多成功案例,为您定制开发。
在本教程中,您将在共享的多模块工作区中创建两个模块,对这些模块进行更改,并在构建中查看这些更改的结果。
本教程需要 go1.18 或更高版本。使用go.dev/dl中的链接确保您已在 Go 1.18 或更高版本中安装了 Go 。
首先,为您要编写的代码创建一个模块。
1、打开命令提示符并切换到您的主目录。
在 Linux 或 Mac 上:
在 Windows 上:
2、在命令提示符下,为您的代码创建一个名为工作区的目录。
3、初始化模块
我们的示例将创建一个hello依赖于 golang.org/x/example 模块的新模块。
创建你好模块:
使用 . 添加对 golang.org/x/example 模块的依赖项go get。
在 hello 目录下创建 hello.go,内容如下:
现在,运行 hello 程序:
在这一步中,我们将创建一个go.work文件来指定模块的工作区。
在workspace目录中,运行:
该go work init命令告诉为包含目录中模块的工作空间go创建一个文件 。go.work./hello
该go命令生成一个go.work如下所示的文件:
该go.work文件的语法与go.mod相同。
该go指令告诉 Go 应该使用哪个版本的 Go 来解释文件。它类似于文件中的go指令go.mod 。
该use指令告诉 Go在进行构建时hello目录中的模块应该是主模块。
所以在模块的任何子目录中workspace都会被激活。
2、运行工作区目录下的程序
在workspace目录中,运行:
Go 命令包括工作区中的所有模块作为主模块。这允许我们在模块中引用一个包,即使在模块之外。在模块或工作区之外运行go run命令会导致错误,因为该go命令不知道要使用哪些模块。
接下来,我们将golang.org/x/example模块的本地副本添加到工作区。然后,我们将向stringutil包中添加一个新函数,我们可以使用它来代替Reverse.
在这一步中,我们将下载包含该模块的 Git 存储库的副本golang.org/x/example,将其添加到工作区,然后向其中添加一个我们将从 hello 程序中使用的新函数。
1、克隆存储库
在工作区目录中,运行git命令来克隆存储库:
2、将模块添加到工作区
该go work use命令将一个新模块添加到 go.work 文件中。它现在看起来像这样:
该模块现在包括example.com/hello模块和 `golang.org/x/example 模块。
这将允许我们使用我们将在模块副本中编写的新代码,而不是使用命令stringutil下载的模块缓存中的模块版本。
3、添加新功能。
我们将向golang.org/x/example/stringutil包中添加一个新函数以将字符串大写。
将新文件夹添加到workspace/example/stringutil包含以下内容的目录:
4、修改hello程序以使用该功能。
修改workspace/hello/hello.go的内容以包含以下内容:
从工作区目录,运行
Go 命令在go.work文件指定的hello目录中查找命令行中指定的example.com/hello模块 ,同样使用go.work文件解析导入golang.org/x/example。
go.work可以用来代替添加replace 指令以跨多个模块工作。
由于这两个模块在同一个工作区中,因此很容易在一个模块中进行更改并在另一个模块中使用它。
现在,要正确发布这些模块,我们需要发布golang.org/x/example 模块,例如在v0.1.0. 这通常通过在模块的版本控制存储库上标记提交来完成。发布完成后,我们可以增加对 golang.org/x/example模块的要求hello/go.mod:
这样,该go命令可以正确解析工作区之外的模块。
Ontology 首先是出现于哲学领域的一个词汇,后来广泛用于计算机领域,发挥了很重要的作用,再后来这个概念被引入生物领域。
gene Ontology 是生物中Ontology中一个重要应用。go项目最初是由研究三种模式生物(果蝇、小鼠和酵母)基因组的研究者共同发起。是生物信息分析中很重要的一个方法
go是在生物领域应用非常广,可以帮助生物学家对基因产物进行准确的定义(功能、位置),节省时间。
因为在最开始的时候,生物学家们更多是专注于自己研究的物种/课题,而且每个生物学家对功能等的定义是存在差异的,导致不同实验室/物种不能实现直接的对接(比如A物种内的x基因的功能使用的是a这个词汇进行注释,而B物种内的x基因的功能却使用的是与a同义的词汇b进行注释,这种情况计算机无法识别),就像讲两种语言的人,无法直接进行语言交流。这种情况导致的问题是,出现了一种阻碍,让问题复杂化了。所以就有了Ontology在生物领域中的应用,实现“书同文”。
go定义了基因/基因产物的功能(通过术语)且定义了它们各自之间功能是怎样联系的(关系)。它组成了一个具有大量term的词汇库,并定义各种term之间的关系(is_a part_of R)。
GO通过三个方面的术语对基因/基因产物的功能进行描述:分子功能(molecular function) -由基因/基因产物行使的分子水平上的功能; 细胞组件(cellular component)-基因/基因产物产生功能时其在细胞结构上的位置;生物学过程(biological process)-在哪个生物学通路/生物过程发挥作用。
目前,GO 注释主要有两种方法:
(1)序列相似性比对(BLAST):例如blast2go(将blast结果转化为GO注释)
(2)结构域相似性比对(InterProScan)
blast2go的本地化教程:
在blast2go软件正确安装的情况下,使用blast2go进行go注释,出现无法得到注释结果的问题:
另外还有可能出错的原因是,blast2go无法识别blast高的版本号,当使用高版本的blast的时候,直接将版本号给修改为低版本的就行了,例如(BLASTX 2.2.25+)
GO 的图形是一个有向无环图
GO、KEGG富集分析是我们做生信分析较为常用的部分,它可以将基因与功能相联系起来。
GO指的是Gene Ontology,是基因功能国际标准分类体系。目的在于建立一个适用于各种物种的,对基因和蛋白质功能进行限定和描述的,并能随着研究不断深入而更新的语言词汇标准。GO分为分子功能(Molecular Function)(MF)、生物过程(Biological Process)(BP)、和细胞组成(Cellular Component)(CC)三个部分。
KEGG指的是京都基因与基因组百科全书,通常我们使用KEGG中的pathway模块,将基因映射到某些通路上,了解基因参与生物体中的代谢过程等。
对于模式生物,GO和KEGG富集分析实现起来比较容易,对于非模式生物来说还是需要花点时间和精力。对于模式生物的GO和KEGG富集分析,网上教程案例挺多的。对于非模式生物,以小麦为例,进行下面一些基本的富集分析。
做富集分析,我们需要了解一下几个概念。
1、前景基因:指的是我们所要进行富集的基因,一般是基因的ID
2、背景基因:指的是前景基因在某个基因集合进行富集,这个基因集合就是背景基因
3、描述信息:每个GO的Term的属性,或者是每个KO号或者map号的属性。
我们具备前景基因,背景基因以及描述信息我们就可以做富集分析啦。
1、前景基因:这是必须的啦。有时候需要进行ID转换,但是个人觉得ID转换根据需要来就行。如果前景基因里面的基因ID是包括在背景基因里面,那就需要进行转换。如果前景基因在是新的基因或者在背景基因没有被注释到的,就不用进行ID转换。下面这个就是融合基因,在背景基因里面没有注释到的,那么我就不要转换。
2、背景基因:一个基因可能具备多个GO term,一个基因也可能参与多个通路,与之相对应的有多个map号
这个案例中背景基因文件构建思路如下图
3、描述文件
跑完之后就会得到一些结果:
生成一些简单的气泡图,条形图,GO二级分类图
类似于语义网络。是为了生物界有一个统一的数据交流语言。 因为在生物学界,存在在种种同名异义、异议同名的现象。为此产生了GO项目。
GO是用一套统一的词汇表来描述生物学中的分子功能、生物过程和细胞成分。其思想大概过程:对于一个基因产品(蛋白质或RNA),用某些词汇来描述它是干什么的或位于细胞哪里、或者参与了哪个生物过程,而这些词汇就是来自GO的Term。
(1)提供生物学功能(术语)的逻辑结构及其相互之间的关系,表现为有向无环图
(2)给特定的基因产物(蛋白质,非编码RNA或大分子复合体,简称为'基因')起一个特定的名字(唯一标识该基因)
Gene Ontology(GO)中最基本的概念是term。GO里面的每一个entry都有一个唯一的数字标记,形如GO:nnnnnnn,还有一个term名,比如"cell", "fibroblast growth factor receptor binding",或者"signal transduction"。每个term都属于一个ontology,总共有三个ontology,它们分别是
细胞成分:细胞的部分或其细胞外环境;
分子功能:基因产物在分子水平上的元素活性,例如结合或催化;
生物过程:具有确定开始和结束的分子事件的操作或集合,与综合生活单元的功能有关
理由一:
在基因表达谱分析中,GO常用于提供基因功能分类标签和基因功能研究的背景知识。利用GO的知识体系和结构特点,旨在发掘与基因差异表达现象关联的单个特征基因功能类或多个特征功能类的组合。
根据GO的知识体系,使用“功能类”(或者叫做“功能模块”)这一概念具有以下优点:我们认为,单个基因的表达情况的改变不足以反映特定功能/通路的整体变化情况。因为类似人类社会的组织结构,生物体的功能的实现决不仅仅是依靠一两个基因功能的改变来实现的。因此过分着重单个基因表达变化,将会在后期结果处理中严重干扰对于结果的合理分析,导致偏倚性加大,而且是无法避免的。因此利用GO的结构体系,把参与同样功能/通路的基因进行“功能类”层面的抽象和整合,提供比基因更高一层次的抽象结论,对理解疾病的发病机制或药物的作用机理等更有帮助。
但是该方法也存在一定的不足,由于生物体内部的调控网络可能具有“scale-free network”的特点,个别功能重要的基因(主效基因)具有“Hub节点”的重要特性,它的功能改变可能对于整个网络来说是至关重要的,在这点上,这些重要的基因又具有一定的“自私独裁”特点。而“功能类”之观点模糊了这种差别特性,过于强调“共性”,而忽视了“个性”,这也是“功能类”的一个不足之处,这就需要结合相关的生物学知识才能够实现
理由二:
GO(gene ontology)对大家而言也许会是一个相对陌生的名词,但是它已经成为生物信息领域中一个极为重要的方法和工具,并正在逐步改变着我们对 biological data的组织和理解方式,它的存在已经大大加快了我们对所拥有的生物数据的整合和利用,我们应该逐步学会理解和掌握这种思想和工具。
众所周知,sequence based biology中的核心内容即是对序列的Annotation(注释),其中主要包含structural annotation和functional annotation,前者涉及分析sequence在genome中的locus以及exon,intron,promoter等的location,而后者则是推断序列编码产物的功能
随着多种生物genome的相继解码,同时大量ESTs以及gene expression profile date的积累,使得annotation的工作量和复杂度大大增加。然而另一方面,大多数基因在不同真核生物中拥有共同的主要生物功能,通过在某些物种中获得的基因或者蛋白质(shared protein)的生物学信息,可以用以解释其他物种中对应的基因或蛋白(especially in comparative genomics)。由于这些繁复的功能信息主要是包含在积累的文献之中,如何有效的提取和综合这些信息就是我们面临的核心困难,这也是GO所要着力解决的问题。通过建立一套具有动态形式的控制字集(controlled vocabulary),来解释真核基因及蛋白在细胞内所扮演的角色,并随着生命科学研究的进步,不断积累和更新。一个ontology会被一个控制字集来描述并给予一定的名称,通过制定“本体”ontologies并运用统计学方法及自然语言处理技术,可以实现知识管理的专家系统控制
总结:
Gene Ontology(GO)包含了基因参与的生物过程,所处的细胞位置,发挥的分子功能三方面功能信息,并将概念粗细不同的功能概念组织成DAG(有向无环图)的结构。
Gene Ontology是一个使用有控制的词汇表和严格定义的概念关系,以有向无环图的形式统一表示各物种的基因功能分类体系,从而较全面地概括了基因的功能信息,纠正了传统功能分类体系中常见的维度混淆问题。
在基因表达谱分析中,GO常用于提供基因功能分类标签和基因功能研究的背景知识。利用GO的知识体系和结构特点,旨在发掘与基因差异表达现象关联的单个特征基因功能类或多个特征功能类的组合。
原文: