SAGA或者TCC - 这两种需要业务代码的大量配合。通过业务代码来补偿一致性。 现实当中有XA协议。比如Ehcache是支持XA协议的。但是性能表现不佳,运维也麻烦。
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名申请、网页空间、营销软件、网站建设、桂东网站维护、网站推广。
二者数据同步的关键在于mysql数据库中主键,方案是在redis启动时区mysql读取所有表键值存入redis中,往redis写数据是,对redis主键自增并进行读取,若mysql更新失败,则需要及时清除缓存及同步redis主键。
如何保证redis集群和mysql的数据一致性 如果要“保证”数据的安全性,那么会带来开销的进一步提升,以至于使用redis带来的性能优势都会丧失。
1、SAGA或者TCC - 这两种需要业务代码的大量配合。通过业务代码来补偿一致性。 现实当中有XA协议。比如Ehcache是支持XA协议的。但是性能表现不佳,运维也麻烦。
2、比如基于数据库的唯一键来保证重复数据不会重复插入多条。因为有唯一键约束了,重复数据插入只会报错,不会导致数据库中出现脏数据。
3、二者数据同步的关键在于mysql数据库中主键,方案是在redis启动时区mysql读取所有表键值存入redis中,往redis写数据是,对redis主键自增并进行读取,若mysql更新失败,则需要及时清除缓存及同步redis主键。
在主机 B 上创建一个 Mysql 账户。 # GRANT ALL ON test.* TO user@% IDENTIFIED BY password //创建用户 user,可以从任何机器访问到主机 B 上的 test 数据库。
嵌套结构解决了我们查询嵌套文档字段的问题,同样的,也可以解决,在es中实现类似mysql的join查询的问题。
答案是肯定的,下面通过canal结合Kafka来实现mysql与redis之间的数据同步。架构设计 通过上述结构设计图可以很清晰的知道用到的组件:MySQL、Canal、Kafka、ZooKeeper、Redis。
想问下原来数据库中的数据会不会有更新和删除,如果有的话,想实时同步到hive中很难。另外即使能实时同步到hive中,hive中分析查询也速度也比较慢的。
首先,如果要想两个主机间的资料同步,一种方法就是主机A往主机B送资料,另外一种主法就是主机B到主机A上拿资料,因为A的IP是动态的(假设),所以我们就得从主机A往主机B送资料。在主机B上创建一个Mysql账户。
目前mysql与elasticsearch常用的同步机制大多是基于插件实现的,常用的插件包括:elasticsearch-jdbc,elasticsearch-river-MySQL,go-mysql-elasticsearch,logstash-input-jdbc。本文对四种插件的优缺点进行了图表对比。
对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张MySQL 表中,这张中间表对应了业务需要的 Elasticsearch 索引,每一列对应索引中的一个Mapping 字段。
嵌套结构解决了我们查询嵌套文档字段的问题,同样的,也可以解决,在es中实现类似mysql的join查询的问题。