成都创新互联网站制作重庆分公司

python中文分词函数 分词Python

如何利用Python对中文进行分词处理

python做中文分词处理主要有以下几种:结巴分词、NLTK、THULAC

公司主营业务:成都网站建设、成都网站设计、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联建站是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联建站推出襄汾免费做网站回馈大家。

1、fxsjy/jieba

结巴的标语是:做最好的 Python 中文分词组件,或许从现在来看它没做到最好,但是已经做到了使用的人最多。结巴分词网上的学习资料和使用案例比较多,上手相对比较轻松,速度也比较快。

结巴的优点:

支持三种分词模式

支持繁体分词

支持自定义词典

MIT 授权协议

2、THULAC:一个高效的中文词法分析工具包

前两天我在做有关于共享单车的用户反馈分类,使用jieba分词一直太过零散,分类分不好。后来江兄给我推荐了THULAC: 由清华大学自然语言处理与社会人文计算实验室研制推出的一套中文词法分析工具包 。THULAC的接口文档很详细,简单易上手。

THULAC分词的优点:

能力强。利用规模最大的人工分词和词性标注中文语料库(约含5800万字)训练而成,模型标注能力强大。

准确率高。该工具包在标准数据集Chinese Treebank(CTB5)上分词的F1值可达97.3%,词性标注的F1值可达到92.9%

速度较快。同时进行分词和词性标注速度为300KB/s,每秒可处理约15万字。只进行分词速度达到1.3MB/s,速度比jieba慢

Python 解决中文编码问题基本可以用以下逻辑:

utf8(输入) —— unicode(处理) —— (输出)utf8

Python 里面处理的字符都是都是unicode 编码,因此解决编码问题的方法是把输入的文本(无论是什么编码)解码为(decode)unicode编码,然后输出时再编码(encode)成所需编码。

由于处理的一般为txt 文档,所以最简单的方法,是把txt 文档另存为utf-8 编码,然后使用Python 处理的时候解码为unicode(sometexts.decode('utf8')),输出结果回txt 的时候再编码成utf8(直接用str() 函数就可以了)。

jieba。lcut(s)属于什么模式分词

jieba。lcut(s)属于中文分词函数。

jieba.lcut(s)是最常用的中文分词函数,用于精确模式,即将字符串分割成等量的中文词组,返回结果是列表类型。

jieba是Python中一个重要的第三方中文分词函数库,能够将一段中文文本分割成中文词语的序列。

如何用python对文章中文分词并统计词频

1、全局变量在函数中使用时需要加入global声明

2、获取网页内容存入文件时的编码为ascii进行正则匹配时需要decode为GB2312,当匹配到的中文写入文件时需要encode成GB2312写入文件。

3、中文字符匹配过滤正则表达式为ur'[\u4e00-\u9fa5]+',使用findall找到所有的中文字符存入分组

4、KEY,Value值可以使用dict存储,排序后可以使用list存储

5、字符串处理使用split分割,然后使用index截取字符串,判断哪些是名词和动词

6、命令行使用需要导入os,os.system(cmd)


名称栏目:python中文分词函数 分词Python
标题来源:http://cxhlcq.com/article/docghdo.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部