成都创新互联网站制作重庆分公司

java分布式代码 分布式代码怎么写

java分布式开发涉及到哪些技术

分布式是一种思想,范围很广,我得先知道它的诞生:

成都创新互联公司专业IDC数据服务器托管提供商,专业提供成都服务器托管,服务器租用,西部信息服务器托管西部信息服务器托管,成都多线服务器托管等服务器托管服务。

以前是一个数据库 一个JSP 就可以做一个应用了,后来随着业务复杂,我们开始分层,比如MVC之类的,再后来我们的数据越来越多了,比如有上亿的数据,这个时候我们一个数据库查询太慢了,就开始分库,这也算是分布式的一种。

还有比如我们的系统访问的人多了,比如双11,上千万人同时访问,我们的服务器(网站)支持不住了,这个时候就要部署到很多个服务器,每个服务器分摊请求,这也是分布式

当然随着业务扩大, 我们得分业务了,比如注册登录的,物流的,卖东西的 等等,不同的系统,但是各个系统之间进行协调,也算分布式一种

以上都算是分布式的来源,主要是解决 压力过大,大家协同工作的,那么这就涉及到一些常用的东西,或者像你说的的技术

1.你用N个数据库才放数据,至少CRUD 方面就 麻烦些了,得用cobar,tddl,mysql-proxy 等协调

2.服务器:你部署了很多服务器,肯定得用个东西来分发请求这些吧,nginx,apache 等分发请求。

3.你公司有很多系统,想很好的联系在一起,光用接口不满足了,得用一些JMS ,像activemq,ons 之类的来协调吧

4.为了解决io问题,得加缓存吧,那么缓存对应上面的,也得分布式吧,就涉及memcache,redies 等等

上面就简单的介绍了下 分布式 的东西,还有很多啦,这是常用的一些,希望你能慢慢来,不是一下子 能理解得

java怎么实现redis分布式锁

一、使用分布式锁要满足的几个条件:

系统是一个分布式系统(关键是分布式,单机的可以使用ReentrantLock或者synchronized代码块来实现)

共享资源(各个系统访问同一个资源,资源的载体可能是传统关系型数据库或者NoSQL)

同步访问(即有很多个进程同事访问同一个共享资源。没有同步访问,谁管你资源竞争不竞争)

二、应用的场景例子

管理后台的部署架构(多台tomcat服务器+redis【多台tomcat服务器访问一台redis】+mysql【多台tomcat服务器访问一台服务器上的mysql】)就满足使用分布式锁的条件。多台服务器要访问redis全局缓存的资源,如果不使用分布式锁就会出现问题。 看如下伪代码:

long N=0L;

//N从redis获取值

if(N5){

N++;

//N写回redis

}

复制代码

Java-JAVA中都有哪几种分布式实现方式,各有什么优缺点

常用的有EJB、rmi、Web Service,还有Hessian、NIO等,它们的优缺点比较比下:

1:EJB

优势:可扩展性好,安全性强,支持分布式事务处理。

劣势:不能跨语言;配置相对复杂,不同J2EE容器之间很难做无缝迁移。

2:rmi

优势:面向对象的远程服务模型;基于TCP协议上的服务,执行速度快。

劣势:不能跨语言;每个远程对象都要绑定端口,不易维护;不支持分布式事务JTA,RMI框架对于安全性、事务、可扩展性的支持非常有限。

3: Web Service

优势:跨语言、跨平台,SOA思想的实现;安全性高;可以用来兼容legacy系统的功能

劣势:性能相对差,不支持两阶段事务

4:Hessian

优势:使用简单,速度快;跨语言,跨平台;可以用来兼容legacy系统的功能。

劣势:安全性的支持不够强,不支持两阶段事务。

5:NIO(Mina/Netty)

优点:基于TCP通信,效率上高于HTTP的方式,非阻塞IO应对高并发绰绰有余。根据具体的需要制定数据传输的格式,可扩展性强。

缺点:不能跨语言,无法穿透防火墙。

java分布式架构有哪些技术

既然是分布式系统,系统间通信的技术就不可避免的要掌握。

首先,我们必须掌握一些基本知识,例如网络通信协议(例如TCP / UDP等),网络IO(Blocking-IO,NonBlocking-IO,Asyn-IO),网卡(多队列等)。   了解有关连接重用,序列化/反序列化,RPC,负载平衡等的信息。

在学习了这些基本知识之后,您基本上可以在分布式系统中编写一个简单的通信模块,但这实际上还远远不够。 现在,您已经进入了分布式字段,您已经对规模有很多要求。 这意味着需要一种通信程序,该程序可以支持大量连接,高并发性和低资源消耗。

大量的连接通常会有两种方式:

大量client连一个server

当前在NonBlocking-IO非常成熟的情况下,支持大量客户端的服务器并不难编写,但是在大规模且通常是长连接的情况下,有一点需要特别注意 ,即服务器挂起时不可能所有客户端都在某个时间点启动重新连接。 那基本上是一场灾难。 我见过一些没有经验的类似案例。 客户端规模扩大后,服务器基本上会在重新启动后立即刷新。 大量传入连接中断(当然,服务器的积压队列首先应设置为稍大一些)。 可以使用的通常方法是在客户端重新连接之前睡眠一段随机的时间。 另外,重连间隔采用避让算法。

一个client连大量的server

有些场景也会出现需要连大量server的现象,在这种情况下,同样要注意的也是不要并发同时去建所有的连接,而是在能力范围内分批去建。

除了建连接外,另外还要注意的地方是并发发送请求也同样,一定要做好限流,否则很容易会因为一些点慢导致内存爆掉。

这些问题在技术风险上得考虑进去,并在设计和代码实现上体现,否则一旦随着规模上去了,问题一时半会还真不太好解。

高并发这个点需要掌握CAS、常见的lock-free算法、读写锁、线程相关知识(例如线程交互、线程池)等,通信层面的高并发在NonBlocking-IO的情况下,最重要的是要注意在整体设计和代码实现上尽量减少对io线程池的时间占用。

低资源消耗这点的话NonBlocking-IO本身基本已经做到。

伸缩性

分布式系统基本上意味着规模不小。 对于此类系统,在设计时必须考虑可伸缩性。 在体系结构图上绘制的任何点,如果请求量或数据量继续增加,该怎么办? 通过添加机器来解决。 当然,此过程不需要考虑无限的情况。 如果您有经验的建筑师,从相对较小的规模到非常大型的范围,那么优势显然并不小,而且它们也将越来越稀缺。  。

横向可扩展性(Scale Out)是指通过增加服务器数量来提高群集的整体性能。 垂直可伸缩性(Scale Up)是指提高每台服务器的性能以提高集群的整体性能。 纵向可扩展性的上限非常明显,而分布式系统则强调水平可伸缩性。

分布式系统应用服务最好做成无状态的

应用服务的状态是指运行时程序因为处理服务请求而存在内存的数据。分布式应用服务最好是设计成无状态。因为如果应用程序是有状态的,那么一旦服务器宕机就会使得应用服务程序受影响而挂掉,那存在内存的数据也就丢失了,这显然不是高可靠的服务。把应用服务设计成无状态的,让程序把需要保存的数据都保存在专门的存储上(eg. 数据库),这样应用服务程序可以任意重启而不丢失数据,方便分布式系统在服务器宕机后恢复应用服务。

伸缩性的问题围绕着以下两种场景在解决:

无状态场景

对于无状态场景,要实现随量增长而加机器支撑会比较简单,这种情况下只用解决节点发现的问题,通常只要基于负载均衡就可以搞定,硬件或软件方式都有;

无状态场景通常会把很多状态放在db,当量到一定阶段后会需要引入服务化,去缓解对db连接数太多的情况。

有状态场景

所谓状态其实就是数据,通常采用Sharding来实现伸缩性,Sharding有多种的实现方式,常见的有这么一些:

2.1 规则Sharding

基于一定规则把状态数据进行Sharding,例如分库分表很多时候采用的就是这样的,这种方式支持了伸缩性,但通常也带来了很复杂的管理、状态数据搬迁,甚至业务功能很难实现的问题,例如全局join,跨表事务等。

2.2 一致性Hash

一致性Hash方案会使得加机器代价更低一些,另外就是压力可以更为均衡,例如分布式cache经常采用,和规则Sharding带来的问题基本一样。

2.3 Auto Sharding

Auto Sharding的好处是基本上不用管数据搬迁,而且随着量上涨加机器就OK,但通常Auto Sharding的情况下对如何使用会有比较高的要求,而这个通常也就会造成一些限制,这种方案例如HBase。

2.4 Copy

Copy这种常见于读远多于写的情况,实现起来又会有最终一致的方案和全局一致的方案,最终一致的多数可通过消息机制等,全局一致的例如zookeeper/etcd之类的,既要全局一致又要做到很高的写支撑能力就很难实现了。

即使发展到今天,Sharding方式下的伸缩性问题仍然是很大的挑战,非常不好做。

上面所写的基本都还只是解决的方向,到细节点基本就很容易判断是一个解决过多大规模场景问题的架构师,:)

稳定性

作为分布式系统,必须要考虑清楚整个系统中任何一个点挂掉应该怎么处理(到了一定机器规模,每天挂掉一些机器很正常),同样主要还是分成了无状态和有状态:

无状态场景

对于无状态场景,通常好办,只用节点发现的机制上具备心跳等检测机制就OK,经验上来说无非就是纯粹靠4层的检测对业务不太够,通常得做成7层的,当然,做成7层的就得处理好规模大了后的问题。

有状态场景

对于有状态场景,就比较麻烦了,对数据一致性要求不高的还OK,主备类型的方案基本也可以用,当然,主备方案要做的很好也非常不容易,有各种各样的方案,对于主备方案又觉得不太爽的情况下,例如HBase这样的,就意味着挂掉一台,另外一台接管的话是需要一定时间的,这个对可用性还是有一定影响的;

全局一致类型的场景中,如果一台挂了,就通常意味着得有选举机制来决定其他机器哪台成为主,常见的例如基于paxos的实现。

可维护性

维护性是很容易被遗漏的部分,但对分布式系统来说其实是很重要的部分,例如整个系统环境应该怎么搭建,部署,配套的维护工具、监控点、报警点、问题定位、问题处理策略等等。


当前名称:java分布式代码 分布式代码怎么写
网页路径:http://cxhlcq.com/article/dodicgj.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部