成都创新互联网站制作重庆分公司

Python怎么求无序列表中第K的大元素-创新互联

本篇内容主要讲解“Python怎么求无序列表中第K的大元素”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python怎么求无序列表中第K的大元素”吧!

成都地区优秀IDC服务器托管提供商(创新互联).为客户提供专业的双线服务器托管,四川各地服务器托管,双线服务器托管、多线服务器托管.托管咨询专线:18980820575

昨天面试上来就是一个算法,平时基本的算法还行,结果变个法就不会了。。。感觉应该刷一波Leecode冷静下。。。今天抽空看下。

题目就是要求O(n)复杂度求无序列表中第K的大元素

如果没有复杂度的限制很简单。。。加了O(n)复杂度确实有点蒙

虽然当时面试官说思路对了,但是还是没搞出来,最后面试官提示用快排的思想

主要还是设立一个flag,列表中小于flag的组成左列表,大于等于flag的组成右列表,主要是不需要在对两侧列表在进行排序了,只需要生成左右列表就行,所以可以实现复杂度O(n)。

举个例子说明下步骤,比如有列表test_list=[6,5,4,3,2,1],找出第3大的元素,就是4,

如果flag=4:

l_list=[3,2,1]

r_list=[6,5]

因为第3大的元素,r_list长度为2,自然flag就是第3大的元素了,return flag,len(r_list)==k-1,就是结束递归的基线条件。

如果flag=1:

l_list=[]

r_list=[6,5,4,3,2]

问题就变成了求r_list里面第K大的元素了

如果flag=6:

l_list=[5,4,3,2,1]

r_list=[]

相当于求l_list里第k-(len(test_list)-len(r_list)+1)大的元素了,这里就是相当于求l_list=[5,4,3,2,1]第2大的元素

通过这三种情况进行递归,最终返回flag就是目标元素

最差复杂度就是n+n-1+n-2+n-3+......+1=(1+n)n/2,就是O(n²)

当时我就会回答出了最差复杂度肯定是n²啊,面试小哥说平均复杂度,我说计算平均复杂度好像很复杂吧?感觉他也有点蒙,就说每次都是二分的情况的复杂度,

当时竟然回答了个logn*logn。。。最后还是被面试管提示的。。。太尴尬了。。。

实际上如果每次刚好二分,第一次取flag比较次数是n,第二次是n/2,依次下去是n/4,n/8.....n/2

就是n+n/2+n/4....

最最丢人的是计算这个结果还想了一会。。。看样该做点高中上数学了。。。

实际结果自然是n(1+1/2+1/4+1/8+....1/2ⁿ)=2n,复杂度自然就是O(n)了

最后实现代码如下:

#给定一个无序列表,求出第K大的元素,要求复杂度O(n)
def find_k(test_list,k):
 flag=test_list[0]
 test_list.pop(0)
 l_list=[i for i in test_list if i < flag]
 r_list=[i for i in test_list if i >= flag]
 
 #结果递归的基线条件
 if len(r_list)==k-1:
  return flag
 elif len(r_list)>k-1:
  return find_k(r_list,k)
 else:
  #因为test_list.pop(0)让test_list少了一个元素,所以下面需要+1
  gap=len(test_list)-len(l_list)+1
  k=k-gap
  return find_k(l_list,k)
 
if __name__ == '__main__':
 test_list = [5, 4, 3, 2, 1,10,20,100]
 res=find_k(test_list,1)
 print(res)

补充知识:从N个数选取k个数的组合--不降原则(DFS)

原理 :不降原则(看代码前先看一下原理吧)

举个例子:

比如说在6里面随便选5个数,那么选法都是什么呢?

瞎枚举?

12345
12346

前两个还不会弄混

然后很可能就乱了

少点数可能不会乱

但是多了就不好整了

比如说在100里随便选50个数。

1 2 3 4 5 6 7 8 9 10 11 12…

所以我们可以运用不降原则:

保证枚举的这些数是升序排列

其实真正的不降原则还可以平

比如 1 2 2 3 3 4…

但是这里要说的“不降原则”不能平哦!

对于这道题也不能平

否则就有重复数字了

拿6个里面选3个举例子

1 2 3
1 2 4
1 2 5
1 2 6

第一轮枚举完毕。

第二个数加一

1 3 ?

这个“?”应该是4,因为是升序排列

1 3 4
1 3 5
1 3 6

接着,就是这样

1 4 5
1 4 6
1 5 6

第一位是1枚举完毕

第一位是2呢?

2 3 4
2 3 5
2 3 6
2 4 5
2 4 6
2 5 6

就是这样的,枚举十分清晰,对吗?

以此类推…

3 4 5
3 4 6
3 5 6
4 5 6

然后就枚举不了了,结束。

所以说,这样就可以避免判重了。

代码

#include
#include

using namespace std;
int n,k; //全局变量:从n个数的集合中选取k个数
int a[25]; //存放n个数的集合数据
int vis[25];//在dfs中记录数据是否被访问过
int re[25];//存放被选取的数字


void dfs(int step,int start)//参数step代表选取第几个数字,参数start代表从集合的第几个开始选
{
 if(step==k)//如果选够了k个就输出
 {
  for(int i=0;i>n>>k)
 {
  memset(a,0,sizeof(a));
  memset(re,0,sizeof(re));
  memset(vis,0,sizeof(vis));
  for(int i=0;i>a[i];
  }
  dfs(0,0);
 }
 return 0;
}

运行结果

Python怎么求无序列表中第K的大元素

变形——从N个数中选取k个数求和(举一反三)

代码

#include
#include

using namespace std;
int n,k; //全局变量:从n个数的集合中选取k个数
int a[25]; //存放n个数的集合数据
int vis[25];//在dfs中记录数据是否被访问过
int re[25];//存放被选取的数字


void dfs(int step,int sum,int start)//参数step代表选取第几个数字,参数sum代表从选取前step-1个数时的总数,参数start代表从集合的第几个开始选
{
 if(step==k)//如果选够了k个就输出
 {
  cout<>n>>k)
 {
  memset(a,0,sizeof(a));
  memset(re,0,sizeof(re));
  memset(vis,0,sizeof(vis));
  for(int i=0;i>a[i];
  }
  dfs(0,0,0);
 }
 return 0;
}

运行结果

Python怎么求无序列表中第K的大元素

变形——从N个数中选取k个数求积(举一反三)

代码

#include
#include

using namespace std;
int n,k; //全局变量:从n个数的集合中选取k个数
int a[25]; //存放n个数的集合数据
int vis[25];//在dfs中记录数据是否被访问过
int re[25];//存放被选取的数字


void dfs(int step,int sum,int start)//参数step代表选取第几个数字,参数start代表从集合的第几个开始选
{
 if(step==k)//如果选够了k个就输出
 {
  cout<>n>>k)
 {
  memset(a,0,sizeof(a));
  memset(re,0,sizeof(re));
  memset(vis,0,sizeof(vis));
  for(int i=0;i>a[i];
  }
  dfs(0,1,0);
 }
 return 0;
}

运行结果

Python怎么求无序列表中第K的大元素

到此,相信大家对“Python怎么求无序列表中第K的大元素”有了更深的了解,不妨来实际操作一番吧!这里是创新互联成都网站设计公司网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网页题目:Python怎么求无序列表中第K的大元素-创新互联
链接分享:http://cxhlcq.com/article/dpigos.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部