成都创新互联网站制作重庆分公司

怎么解决mysql大数据,mysql数据量太大怎么办

mysql怎么处理大数据

mysql处理大数据很困难吧,不建议使用mysql来处理大数据。

创新互联公司一直秉承“诚信做人,踏实做事”的原则,不欺瞒客户,是我们最起码的底线! 以服务为基础,以质量求生存,以技术求发展,成交一个客户多一个朋友!为您提供成都网站建设、网站设计、成都网页设计、成都微信小程序、成都网站开发、成都网站制作、成都软件开发、app软件定制开发是成都本地专业的网站建设和网站设计公司,等你一起来见证!

mysql有个针对大数据的产品,叫infobright,可以看看,不过好像是收费的。

或者研究下,Hadoop,Hive等,可处理大数据。

如果有预算,可以使用一些商业大数据产品,国内的譬如永洪科技的大数据BI产品,不仅能高性能处理大数据,还可做数据分析。

当然如果是简单的查询,mysql如果做好索引,可能可以提高性能。

mysql 数据量超过百万后怎么处理

我们经常会遇到操作一张大表,发现操作时间过长或影响在线业务了,想要回退大表操作的场景。在我们停止大表操作之后,等待回滚是一个很漫长的过程,尽管你可能对知道一些缩短时间的方法,处于对生产环境数据完整性的敬畏,也会选择不做介入。最终选择不作为的原因大多源于对操作影响的不确定性。实践出真知,下面针对两种主要提升事务回滚速度的方式进行验证,一种是提升操作可用内存空间,一种是通过停实例,禁用 redo 回滚方式进行进行验证。

仔细阅读过官方手册的同学,一定留意到了对于提升大事务回滚效率,官方提供了两种方法:一是增加 innodb_buffer_pool_size 参数大小,二是合理利用 innodb_force_recovery=3 参数,跳过事务回滚过程。第一种方式比较温和,innodb_buffer_pool_size 参数是可以动态调整的,可行性也较高。第二种方式相较之下较暴力,但效果较好。

两种方式各有自己的优点,第一种方式对线上业务系统影响较小,不会中断在线业务。第二种方式效果更显著,会短暂影响业务连续,回滚所有没有提交的事务。

mysql 如何处理亿级数据

1、数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引。这是一个基本的新闻系统的简单模型。现在往里面填充数据,填充10万篇新闻。 

2、最后collect 为 10万条记录,数据库表占用硬盘1.6G。OK ,看下面这条sql语句:select id,title from collect limit 1000,10; 很快;基本上0.01秒就OK,再看下面的select id,title from collect limit 90000,10; 从9万条开始分页。

3、8-9秒完成。

4、看下面一条语句:select id from collect order by id limit 90000,10; 很快,0.04秒就OK。因为用了id主键做索引当然快。


网站标题:怎么解决mysql大数据,mysql数据量太大怎么办
本文来源:http://cxhlcq.com/article/dscceic.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部