成都创新互联网站制作重庆分公司

【Redis】用python操作redis集群

https://blog.csdn.net/bitcarmanlee/article/details/51852126

 密码不能写到列表中去:

成都创新互联公司专业为企业提供梁平网站建设、梁平做网站、梁平网站设计、梁平网站制作等企业网站建设、网页设计与制作、梁平企业网站模板建站服务,10多年梁平做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

  1. 有密码 就是这样 redisconn = StrictRedisCluster(startup_nodes=redis_nodes,password=password)


结合上一篇文章,改进脚本后操作redis-cluster
  1. [root@ip-172-31-47-226 tmp]# more /root/get_nottl.py
  2. # encoding: utf-8
  3. """
  4. author: yangyi@youzan.com
  5. time: 2018/4/26 下午4:34
  6. func: 获取数据库中没有设置ttl的 key
  7. """
  8. import redis
  9. import argparse
  10. import time
  11. import sys
  12. import rediscluster

  13. class ShowProcess:
  14.     """
  15.     显示处理进度的类
  16.     调用该类相关函数即可实现处理进度的显示
  17.     """
  18.     i = 0 # 当前的处理进度
  19.     max_steps = 0 # 总共需要处理的次数
  20.     max_arrow = 50 # 进度条的长度

  21.     # 初始化函数,需要知道总共的处理次数
  22.     def __init__(self, max_steps):
  23.         self.max_steps = max_steps
  24.         self.i = 0

  25.     # 显示函数,根据当前的处理进度i显示进度
  26.     # 效果为[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>]100.00%
  27.     def show_process(self, i = None):
  28.         if i is not None:
  29.             self.i = i
  30.         else:
  31.             self.i += 1
  32.         num_arrow = int(int(self.i) * int(self.max_arrow) / int(self.max_steps)) # 计算显示多少个'>'
  33.         num_line = self.max_arrow - num_arrow # 计算显示多少个'-'
  34.         percent = self.i * 100.0 / self.max_steps # 计算完成进度,格式为xx.xx%
  35.         process_bar = '[' + '>' * num_arrow + ' ' * num_line + ']'+ '%.2f' % percent + '%' + '\r' # 带输出的字符串,'\r'表示不换行回到最左边
  36.         sys.stdout.write(process_bar) # 这两句打印字符到终端
  37.         sys.stdout.flush()

  38.     def close(self, words='done'):
  39.         print ''
  40.         print words
  41.         self.i = 0


  42. def check_ttl(redis_conn, no_ttl_file, dbindex):
  43.     start_time = time.time()
  44.     no_ttl_num = 0
  45.     allkey= redis_conn.dbsize()
  46.     keys_num= sum(list(set(allkey.values())))
  47.     print"key分布如下:",allkey
  48.     print "there are {num} keys in db {index} ".format(num=keys_num, index=dbindex)
  49.     process_bar = ShowProcess(keys_num)
  50.     with open(no_ttl_file, 'a') as f:

  51.         for key in redis_conn.scan_iter(count=10):
  52.             process_bar.show_process()
  53.             if redis_conn.ttl(key) == -1:
  54.                 no_ttl_num += 1
  55.                 if no_ttl_num < 10000:
  56.                     f.write(key+'\n')
  57.             else:
  58.                 continue

  59.     process_bar.close()
  60.     print "cost time(s):", time.time() - start_time
  61.     print "no ttl keys number:", no_ttl_num
  62.     print "we write keys with no ttl to the file: %s" % no_ttl_file


  63. def main():
  64.     parser = argparse.ArgumentParser()
  65.     parser.add_argument('-p', type=int, dest='port', action='store', help='port of redis ')
  66.     parser.add_argument('-a', type=str, dest='password', action='store', help='password of redis ')
  67.     parser.add_argument('-d', type=str, dest='db_list', action='store', default=0, help='ex : -d all / -d 1,2,3,4 ')
  68.     args = parser.parse_args()
  69.     port = args.port
  70.     pwd = args.password
  71.     if args.db_list == 'all':
  72.         db_list = [i for i in xrange(0, 16)]
  73.     else:
  74.         db_list = [int(i) for i in args.db_list.split(',')]

  75.     for index in db_list:
  76.         try:
  77.             startup_nodes= [{"host": "172.31.47.226", "port": port,"db":index}]
  78.             r= rediscluster.StrictRedisCluster(startup_nodes=startup_nodes, password=pwd)
  79.         except Exception, e:
  80.             print e
  81.         else:
  82.             no_ttl_keys_file = "/tmp/{port}_{db}_no_ttl_keys.txt".format(port=port, db=index)
  83.             check_ttl(r, no_ttl_keys_file, index)


  84. if __name__ == '__main__':
  85.     main()






当前名称:【Redis】用python操作redis集群
本文网址:http://cxhlcq.com/article/gchsoh.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部