成都创新互联网站制作重庆分公司

Java多线程Queue、BlockingQueue和使用BlockingQueue实现生产消费者模型方法解析

Queue是什么

公司主营业务:网站建设、成都做网站、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联推出文圣免费做网站回馈大家。

队列,是一种数据结构。除了优先级队列和LIFO队列外,队列都是以FIFO(先进先出)的方式对各个元素进行排序的。无论使用哪种排序方式,队列的头都是调用remove()或poll()移除元素的。在FIFO队列中,所有新元素都插入队列的末尾。

Queue中的方法

Queue中的方法不难理解,6个,每2对是一个也就是总共3对。看一下JDKAPI就知道了:

Java多线程Queue、BlockingQueue和使用BlockingQueue实现生产消费者模型方法解析

注意一点就好,Queue通常不允许插入Null,尽管某些实现(比如LinkedList)是允许的,但是也不建议。

BlockingQueue

1、BlockingQueue概述

BlockingQueue也是java.util.concurrent下的主要用来控制线程同步的工具。

BlockingQueue有四个具体的实现类,根据不同需求,选择不同的实现类

1、ArrayBlockingQueue:一个由数组支持的有界阻塞队列,规定大小的BlockingQueue,其构造函数必须带一个int参数来指明其大小.其所含的对象是以FIFO(先入先出)顺序排序的。

2、LinkedBlockingQueue:大小不定的BlockingQueue,若其构造函数带一个规定大小的参数,生成的BlockingQueue有大小限制,若不带大小参数,所生成的BlockingQueue的大小由Integer.MAX_VALUE来决定.其所含的对象是以FIFO(先入先出)顺序排序的。

3、PriorityBlockingQueue:类似于LinkedBlockQueue,但其所含对象的排序不是FIFO,而是依据对象的自然排序顺序或者是构造函数的Comparator决定的顺序。

4、SynchronousQueue:特殊的BlockingQueue,对其的操作必须是放和取交替完成的。

LinkedBlockingQueue可以指定容量,也可以不指定,不指定的话,默认最大是Integer.MAX_VALUE,其中主要用到put和take方法,put方法在队列满的时候会阻塞直到有队列成员被消费,take方法在队列空的时候会阻塞,直到有队列成员被放进来。

讲BlockingQueue,因为BlockingQueue是Queue中的一个重点,并且通过BlockingQueue我们再次加深对于生产者/消费者模型的理解。其他的Queue都不难,通过查看JDKAPI和简单阅读源码完全可以理解他们的作用。

BlockingQueue,顾名思义,阻塞队列。BlockingQueue是在java.util.concurrent下的,因此不难理解,BlockingQueue是为了解决多线程中数据高效安全传输而提出的。

多线程中,很多场景都可以使用队列实现,比如经典的生产者/消费者模型,通过队列可以便利地实现两者之间数据的共享,定义一个生产者线程,定义一个消费者线程,通过队列共享数据就可以了。

当然现实不可能都是理想的,比如消费者消费速度比生产者生产的速度要快,那么消费者消费到一定程度上的时候,必须要暂停等待一下了(使消费者线程处于WAITING状态)。BlockingQueue的提出,就是为了解决这个问题的,他不用程序员去控制这些细节,同时还要兼顾效率和线程安全。

阻塞队列所谓的"阻塞",指的是某些情况下线程会挂起(即阻塞),一旦条件满足,被挂起的线程又会自动唤醒。使用BlockingQueue,不需要关心什么时候需要阻塞线程,什么时候需要唤醒线程,这些内容BlockingQueue都已经做好了

2、BlockingQueue中的方法

BlockingQueue既然是Queue的子接口,必然有Queue中的方法,上面已经列了。看一下BlockingQueue中特有的方法:

(1)voidput(Ee)throwsInterruptedException

把e添加进BlockingQueue中,如果BlockingQueue中没有空间,则调用线程被阻塞,进入等待状态,直到BlockingQueue中有空间再继续

(2)voidtake()throwsInterruptedException

取走BlockingQueue里面排在首位的对象,如果BlockingQueue为空,则调用线程被阻塞,进入等待状态,直到BlockingQueue有新的数据被加入

(3)intdrainTo(Collection<?superE>c,intmaxElements)

一次性取走BlockingQueue中的数据到c中,可以指定取的个数。通过该方法可以提升获取数据效率,不需要多次分批加锁或释放锁

3、ArrayBlockingQueue

基于数组的阻塞队列,必须指定队列大小。比较简单。ArrayBlockingQueue中只有一个ReentrantLock对象,这意味着生产者和消费者无法并行运行(见下面的代码)。另外,创建ArrayBlockingQueue时,可以指定ReentrantLock是否为公平锁,默认采用非公平锁。

/** Main lock guarding all access */
private final ReentrantLock lock;
/** Condition for waiting takes */
private final Condition notEmpty;
/** Condition for waiting puts */
private final Condition notFull;

4、LinkedBlockingQueue

基于链表的阻塞队列,和ArrayBlockingQueue差不多。不过LinkedBlockingQueue如果不指定队列容量大小,会默认一个类似无限大小的容量,之所以说是类似是因为这个无限大小是Integer.MAX_VALUE,这么说就好理解ArrayBlockingQueue为什么必须要制定大小了,如果ArrayBlockingQueue不指定大小的话就用Integer.MAX_VALUE,那将造成大量的空间浪费,但是基于链表实现就不一样的,一个一个节点连起来而已。另外,LinkedBlockingQueue生产者和消费者都有自己的锁(见下面的代码),这意味着生产者和消费者可以"同时"运行。

/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock();
/** Wait queue for waiting takes */
private final Condition notEmpty = takeLock.newCondition();
/** Lock held by put, offer, etc */
private final ReentrantLock putLock = new ReentrantLock();
/** Wait queue for waiting puts */
private final Condition notFull = putLock.newCondition();

5、SynchronousQueue

比较特殊,一种没有缓冲的等待队列。什么叫做没有缓冲区,ArrayBlocking中有:

/** The queued items */
private final E[] items;

数组用以存储队列。LinkedBlockingQueue中有:

/**
 * Linked list node class
 */
static class Node {
  /** The item, volatile to ensure barrier separating write and read */
  volatile E item;
  Node next;
  Node(E x) { item = x; }
}

将队列以链表形式连接。

生产者/消费者操作数据实际上都是通过这两个"中介"来操作数据的,但是SynchronousQueue则是生产者直接把数据给消费者(消费者直接从生产者这里拿数据),好像又回到了没有生产者/消费者模型的老办法了。换句话说,每一个插入操作必须等待一个线程对应的移除操作。SynchronousQueue又有两种模式:

1、公平模式

采用公平锁,并配合一个FIFO队列(Queue)来管理多余的生产者和消费者

2、非公平模式

采用非公平锁,并配合一个LIFO栈(Stack)来管理多余的生产者和消费者,这也是SynchronousQueue默认的模式

利用BlockingQueue实现生产者消费者模型

上一篇我们写的生产者消费者模型有局限,局限体现在:

缓冲区内只能存放一个数据,实际生产者/消费者模型中的缓冲区内可以存放大量生产者生产出来的数据
生产者和消费者处理数据的速度几乎一样
OK,我们就用BlockingQueue来简单写一个例子,并且让生产者、消费者处理数据速度不同。子类选择的是ArrayBlockingQueue,大小定为10:

public static void main(String[] args)
{
  final BlockingQueue bq = new ArrayBlockingQueue(10);
  Runnable producerRunnable = new Runnable()
  {
    int i = 0;
    public void run()
    {
      while (true)
      {
        try
        {
          System.out.println("我生产了一个" + i++);
          bq.put(i + "");
          Thread.sleep(1000);
        } 
        catch (InterruptedException e)
        {
          e.printStackTrace();
        }
      }
    }
  };
  Runnable customerRunnable = new Runnable()
  {
    public void run()
    {
      while (true)
      {
        try
        {
          System.out.println("我消费了一个" + bq.take());
          Thread.sleep(3000);
        } 
        catch (InterruptedException e)
        {
          e.printStackTrace();
        }
      }
    }
  };
  Thread producerThread = new Thread(producerRunnable);
  Thread customerThread = new Thread(customerRunnable);
  producerThread.start();
  customerThread.start();
}

代码的做法是让生产者生产速度快于消费者消费速度的,看一下运行结果:

我生产了一个0
我消费了一个1
我生产了一个1
我生产了一个2
我消费了一个2
我生产了一个3
我生产了一个4
我生产了一个5
我消费了一个3
我生产了一个6
我生产了一个7
我生产了一个8
我消费了一个4
我生产了一个9
我生产了一个10
我生产了一个11
我消费了一个5
我生产了一个12
我生产了一个13
我生产了一个14
我消费了一个6
我生产了一个15
我生产了一个16
我消费了一个7
我生产了一个17
我消费了一个8
我生产了一个18

分两部分来看输出结果:

1、第1行~第23行。这块BlockingQueue未满,所以生产者随便生产,消费者随便消费,基本上都是生产3个消费1个,消费者消费速度慢

2、第24行~第27行,从前面我们可以看出,生产到16,消费到6,说明到了ArrayBlockingQueue的极限10了,这时候没办法,生产者生产一个ArrayBlockingQueue就满了,所以不能继续生产了,只有等到消费者消费完才可以继续生产。所以之后的打印内容一定是一个生产者、一个消费者

这就是前面一章开头说的"通过平衡生产者和消费者的处理能力来提高整体处理数据的速度",这给例子应该体现得很明显。另外,也不要担心非单一生产者/消费者场景下的系统假死问题,缓冲区空、缓冲区满的场景BlockingQueue都是定义了不同的Condition,所以不会唤醒自己的同类。

总结

以上就是本文关于Java多线程Queue、BlockingQueue和使用BlockingQueue实现生产消费者模型方法解析的全部内容,希望对大家有所帮助。感兴趣的朋友可以参阅本站:

浅谈Java多线程的优点及代码示例

浅谈Java多线程处理中Future的妙用(附源码)

Java利用future及时获取多线程运行结果

如有不足之处,欢迎留言指出。


分享题目:Java多线程Queue、BlockingQueue和使用BlockingQueue实现生产消费者模型方法解析
URL网址:http://cxhlcq.com/article/ghpcjo.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部