成都创新互联网站制作重庆分公司

ApacheFlink中Flink数据流编程是怎样的

这期内容当中小编将会给大家带来有关ApacheFlink中Flink数据流编程是怎样的,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

目前累计服务客户上1000+,积累了丰富的产品开发及服务经验。以网站设计水平和技术实力,树立企业形象,为客户提供成都网站设计、网站制作、网站策划、网页设计、网络营销、VI设计、网站改版、漏洞修补等服务。成都创新互联公司始终以务实、诚信为根本,不断创新和提高建站品质,通过对领先技术的掌握、对创意设计的研究、对客户形象的视觉传递、对应用系统的结合,为客户提供更好的一站式互联网解决方案,携手广大客户,共同发展进步。

数据源可以通过StreamExecutionEnvironment.addSource(sourceFunction)方式来创建,Flink也提供了一些内置的数据源方便使用,例如readTextFile(path) readFile(),当然,也可以写一个自定义的数据源(可以通过实现SourceFunction方法,但是无法并行执行。或者实现可以并行实现的接口ParallelSourceFunction或者继承RichParallelSourceFunction)

入门

首先做一个简单入门,建立一个DataStreamSourceApp

Scala

object DataStreamSourceApp {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    socketFunction(env)
        env.execute("DataStreamSourceApp")
  }

  def socketFunction(env: StreamExecutionEnvironment): Unit = {
    val data=env.socketTextStream("192.168.152.45", 9999)
    data.print()
  }
}

这个方法将会从socket中读取数据,因此我们需要在192.168.152.45中开启服务:

nc -lk 9999

然后运行DataStreamSourceApp,在服务器上输入:

iie4bu@swarm-manager:~$ nc -lk 9999
apache
flink
spark

在控制台中也会输出:

3> apache
4> flink
1> spark

前面的 341表示的是并行度。可以通过设置setParallelism来操作:

data.print().setParallelism(1)

Java

public class JavaDataStreamSourceApp {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
        socketFunction(environment);
        environment.execute("JavaDataStreamSourceApp");
    }
    public static void socketFunction(StreamExecutionEnvironment executionEnvironment){
        DataStreamSource data = executionEnvironment.socketTextStream("192.168.152.45", 9999);
        data.print().setParallelism(1);
    }
}

自定义添加数据源方式

Scala

实现SourceFunction接口

这种方式不能并行处理。

新建一个自定义数据源

class CustomNonParallelSourceFunction extends SourceFunction[Long]{

  var count=1L
  var isRunning = true


  override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {
    while (isRunning){
      ctx.collect(count)
      count+=1
      Thread.sleep(1000)
    }
  }

  override def cancel(): Unit = {
    isRunning = false
  }
}

这个方法首先定义一个初始值count=1L,然后执行的run方法,方法主要是输出count,并且执行加一操作,当执行cancel方法时结束。调用方法如下:

  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    //    socketFunction(env)
    nonParallelSourceFunction(env)
    env.execute("DataStreamSourceApp")
  }

  def nonParallelSourceFunction(env: StreamExecutionEnvironment): Unit = {
    val data=env.addSource(new CustomNonParallelSourceFunction())
    data.print()
  }

输出结果就是控制台一直输出count值。

无法设置并行度,除非设置并行度是1.

val data=env.addSource(new CustomNonParallelSourceFunction()).setParallelism(3)

那么控制台报错:

Exception in thread "main" java.lang.IllegalArgumentException: Source: 1 is not a parallel source
	at org.apache.flink.streaming.api.datastream.DataStreamSource.setParallelism(DataStreamSource.java:55)
	at com.vincent.course05.DataStreamSourceApp$.nonParallelSourceFunction(DataStreamSourceApp.scala:16)
	at com.vincent.course05.DataStreamSourceApp$.main(DataStreamSourceApp.scala:11)
	at com.vincent.course05.DataStreamSourceApp.main(DataStreamSourceApp.scala)

继承ParallelSourceFunction方法

import org.apache.flink.streaming.api.functions.source.{ParallelSourceFunction, SourceFunction}

class CustomParallelSourceFunction extends ParallelSourceFunction[Long]{

  var isRunning = true
  var count = 1L


  override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {
    while(isRunning){
      ctx.collect(count)
      count+=1
      Thread.sleep(1000)
    }
  }

  override def cancel(): Unit = {
    isRunning=false
  }
}

方法的功能跟上面是一样的。main方法如下:

  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    //    socketFunction(env)
//    nonParallelSourceFunction(env)
    parallelSourceFunction(env)


    env.execute("DataStreamSourceApp")
  }

  def parallelSourceFunction(env: StreamExecutionEnvironment): Unit = {
    val data=env.addSource(new CustomParallelSourceFunction()).setParallelism(3)
    data.print()
  }

可以设置并行度3,输出结果如下:

2> 1
1> 1
2> 1
2> 2
3> 2
3> 2
3> 3
4> 3
4> 3

继承RichParallelSourceFunction方法

class CustomRichParallelSourceFunction extends RichParallelSourceFunction[Long] {
  var isRunning = true
  var count = 1L


  override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {
    while (isRunning) {
      ctx.collect(count)
      count += 1
      Thread.sleep(1000)
    }
  }

  override def cancel(): Unit = {
    isRunning = false
  }
}
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    //    socketFunction(env)
    //    nonParallelSourceFunction(env)
//    parallelSourceFunction(env)
    richParallelSourceFunction(env)

    env.execute("DataStreamSourceApp")
  }

  def richParallelSourceFunction(env: StreamExecutionEnvironment): Unit = {
    val data = env.addSource(new CustomRichParallelSourceFunction()).setParallelism(3)
    data.print()
  }

Java

实现SourceFunction接口

import org.apache.flink.streaming.api.functions.source.SourceFunction;

public class JavaCustomNonParallelSourceFunction implements SourceFunction {

    boolean isRunning = true;
    long count = 1;

    @Override
    public void run(SourceFunction.SourceContext ctx) throws Exception {
        while (isRunning) {
            ctx.collect(count);
            count+=1;
            Thread.sleep(1000);
        }
    }

    @Override
    public void cancel() {
        isRunning=false;
    }
}
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
//        socketFunction(environment);
        nonParallelSourceFunction(environment);
        environment.execute("JavaDataStreamSourceApp");

    }

    public static void nonParallelSourceFunction(StreamExecutionEnvironment executionEnvironment){
        DataStreamSource data = executionEnvironment.addSource(new JavaCustomNonParallelSourceFunction());
        data.print().setParallelism(1);
    }

当设置并行度时:

        DataStreamSource data = executionEnvironment.addSource(new JavaCustomNonParallelSourceFunction()).setParallelism(2);

那么报错异常:

Exception in thread "main" java.lang.IllegalArgumentException: Source: 1 is not a parallel source
	at org.apache.flink.streaming.api.datastream.DataStreamSource.setParallelism(DataStreamSource.java:55)
	at com.vincent.course05.JavaDataStreamSourceApp.nonParallelSourceFunction(JavaDataStreamSourceApp.java:16)
	at com.vincent.course05.JavaDataStreamSourceApp.main(JavaDataStreamSourceApp.java:10)

实现ParallelSourceFunction接口

import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;

public class JavaCustomParallelSourceFunction implements ParallelSourceFunction {

    boolean isRunning = true;
    long count = 1;

    @Override
    public void run(SourceContext ctx) throws Exception {
        while (isRunning) {
            ctx.collect(count);
            count+=1;
            Thread.sleep(1000);
        }
    }

    @Override
    public void cancel() {
        isRunning=false;
    }
}
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
//        socketFunction(environment);
//        nonParallelSourceFunction(environment);
        parallelSourceFunction(environment);

        environment.execute("JavaDataStreamSourceApp");
    }

    public static void parallelSourceFunction(StreamExecutionEnvironment executionEnvironment){
        DataStreamSource data = executionEnvironment.addSource(new JavaCustomParallelSourceFunction()).setParallelism(2);
        data.print().setParallelism(1);
    }

可以设置并行度,输出结果:

1
1
2
2
3
3
4
4
5
5

继承抽象类RichParallelSourceFunction

public class JavaCustomRichParallelSourceFunction extends RichParallelSourceFunction {

    boolean isRunning = true;
    long count = 1;

    @Override
    public void run(SourceContext ctx) throws Exception {
        while (isRunning) {
            ctx.collect(count);
            count+=1;
            Thread.sleep(1000);
        }
    }

    @Override
    public void cancel() {
        isRunning=false;
    }
}
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
//        socketFunction(environment);
//        nonParallelSourceFunction(environment);
//        parallelSourceFunction(environment);
        richpParallelSourceFunction(environment);
        environment.execute("JavaDataStreamSourceApp");
    }

    public static void richpParallelSourceFunction(StreamExecutionEnvironment executionEnvironment){
        DataStreamSource data = executionEnvironment.addSource(new JavaCustomRichParallelSourceFunction()).setParallelism(2);
        data.print().setParallelism(1);
    }

输出结果:

1
1
2
2
3
3
4
4
5
5
6
6

SourceFunction  ParallelSourceFunction  RichParallelSourceFunction类之间的关系

上述就是小编为大家分享的ApacheFlink中Flink数据流编程是怎样的了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注创新互联行业资讯频道。


文章名称:ApacheFlink中Flink数据流编程是怎样的
当前路径:http://cxhlcq.com/article/gigcjs.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部