成都创新互联网站制作重庆分公司

在tensorflow中如何实现去除不足一个batch的数据-创新互联

小编给大家分享一下在tensorflow中如何实现去除不足一个batch的数据,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

站在用户的角度思考问题,与客户深入沟通,找到田家庵网站设计与田家庵网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都网站设计、成都网站建设、企业官网、英文网站、手机端网站、网站推广、国际域名空间、虚拟主机、企业邮箱。业务覆盖田家庵地区。

代码如下

#-*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np
 
value1 = tf.placeholder(dtype=tf.float32)
value2 = tf.placeholder(dtype=tf.float32)
value3 = value1 + value2
 
#定义的dataset有参数,只能使用参数化迭代器
dataset = tf.data.Dataset.range(10)
# 定义参数化迭代器
dataset = dataset.shuffle(100)
dataset = dataset.apply(tf.contrib.data.batch_and_drop_remainder(3)) #每个batch4个数据,不足3个舍弃
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
 
with tf.Session() as sess:
  # 需要用参数初始化迭代器
  for i in range(2):
    sess.run(iterator.initializer)
    while True:
      try:
        value = sess.run(next_element)
        result = sess.run(value3,feed_dict={value1:value,value2:value})
        print(result)
      except tf.errors.OutOfRangeError:
        print("End of epoch %d" % i)
        break

以上是“在tensorflow中如何实现去除不足一个batch的数据”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


文章题目:在tensorflow中如何实现去除不足一个batch的数据-创新互联
URL标题:http://cxhlcq.com/article/gpsgj.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部