成都创新互联网站制作重庆分公司

python函数工厂,python 大厂

Python嵌套函数和闭包

在Python语言中,可以在函数中定义函数。 这种在函数中嵌套定义的函数也叫内部函数。我们来看下面的代码:

创新互联公司专注为客户提供全方位的互联网综合服务,包含不限于网站建设、做网站、宁夏网络推广、微信小程序定制开发、宁夏网络营销、宁夏企业策划、宁夏品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联公司为所有大学生创业者提供宁夏建站搭建服务,24小时服务热线:18982081108,官方网址:www.cdcxhl.com

上述代码中,定义了函数greet,在函数greet内部又定义了一个函数inner_func, 并调用该函数打印了一串字符。

我们可以看到,内部函数inner_func的定义和使用与普通函数基本相同。需要注意的是变量的作用域,在上述代码中,函数参数name对于全局函数greet是局部变量,对内部函数inner_func来说则是非局部变量。内部函数对于非局部变量的访问规则类似于标准的外部函数访问全局变量。

从这个例子我们还可以看到内部函数的一个作用,就是通过定义内部函数的方式将一些功能隐藏起来,防止外部直接调用。常见的场景是,在一个复杂逻辑的函数中,将一些小的任务定义成内部函数,然后由这个外层函数使用,这样可以使代码更为清晰,易于维护。这些内部函数只会在这个外层函数中使用,不能被其他函数或模块使用。

在Python语言中, 函数也是对象,它可以被创建、赋值给变量,或者作为函数的返回值。我们来看下面这个例子。

在上述代码中,在函数gen_greet内部定义了inner_func函数,并返回了一个inner_func函数对象。外部函数gen_greet返回了一个函数对象,所以像gen_greet这样的函数也叫工厂函数。

在内部函数inner_func中,使用了外部函数的传参greet_words(非局部变量),以及函数的参数name(局部变量),来打印一个字符串。

接下来,调用gen_greet("Hello")创建一个函数对象say_hello,紧接着调用say_hello("Mr. Zhang"),输出的结果为:Hello, Mr. Zhang!

同样的,调用gen_greet("Hi")创建一个函数对象say_hi,调用say_hello("Mr. Zhang"),输出的结果为:Hi,Tony!

我们可以发现,gen_greet返回的函数对象具有记忆功能,它能够把所需使用的非局部变量保存下来,用于后续被调用的时候使用。这种保存了非局部变量的函数对象被称作闭包(closure)。

那么闭包是如何实现的呢?其实并不复杂,函数对象中有一个属性__closure__,它就是在创建函数对象时用来保存这些非局部变量的。

__closure__属性是一个元组或者None类型。在上述代码中,我们可以通过下面方式查看:

函数的嵌套所实现的功能大都可以通过定义类的方式来实现,而且类是更加面向对象的代码编写方式。

嵌套函数的一个主要用途是实现函数的装饰器。我们看下面的代码:

在上述代码中,logger函数返回函数with_logging,with_logging则是打印了函数func的名称及传入的参数,然后调用func, 并将参数传递给func。其中的@wraps(func)语句用于复制函数func的名称、注释文档、参数列表等等,使得with_logging函数具有被装饰的函数func相同的属性。

代码中接下来用@logger对函数power_func进行修饰,它的作用等同于下面的代码:

可见,装饰器@符其实就是上述代码的精简写法。

通过了解了嵌套函数和闭包的工作原理,我们在使用过程中就能够更加得心应手了。

Python中冷门但非常好用的内置函数

Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性

Counter

collections在python官方文档中的解释是High-performance container datatypes,直接的中文翻译解释高性能容量数据类型。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。在python3.10.1中它总共包含以下几种数据类型:

容器名简介

namedtuple() 创建命名元组子类的工厂函数

deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)

ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面

Counter 字典的子类,提供了可哈希对象的计数功能

OrderedDict 字典的子类,保存了他们被添加的顺序

defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值

UserDict 封装了字典对象,简化了字典子类化

UserList 封装了列表对象,简化了列表子类化

UserString 封装了字符串对象,简化了字符串子类化

其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读。Counter类继承dict类,所以它能使用dict类里面的方法

举例

#统计词频

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

result = {}

for fruit in fruits:

if not result.get(fruit):

result[fruit] = 1

else:

result[fruit] += 1

print(result)

#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:

from collections import Counter

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

c = Counter(fruits)

print(dict(c))

#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了,也更容易阅读和维护了。

elements()

返回一个迭代器,其中每个元素将重复出现计数值所指定次。元素会按首次出现的顺序返回。如果一个元素的计数值小于1,elements()将会忽略它。

c = Counter(a=4, b=2, c=0, d=-2)

sorted(c.elements())

['a', 'a', 'a', 'a', 'b', 'b']most_common([n])

返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序。如果n被省略或为None,most_common()将返回计数器中的所有元素。计数值相等的元素按首次出现的顺序排序:

Counter('abracadabra').most_common(3)

[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档

实战

Leetcode 1002.查找共用字符

给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回。你可以按任意顺序返回答案。

输入:words = ["bella", "label", "roller"]

输出:["e", "l", "l"]

输入:words = ["cool", "lock", "cook"]

输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数

class Solution:

def commonChars(self, words: List[str]) - List[str]:

from collections import Counter

ans = Counter(words[0])

for i in words[1:]:

ans = Counter(i)

return list(ans.elements())提交一下,发现83个测试用例耗时48ms,速度还是不错的

sorted

在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表

对列表升序操作:

a = sorted([2, 4, 3, 7, 1, 9])

print(a)

# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:

sorted((4,1,9,6),reverse=True)

print(a)

# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:

fruits = ['apple', 'watermelon', 'pear', 'banana']

a = sorted(fruits, key = lambda x : len(x))

print(a)

# 输出:['pear', 'apple', 'banana', 'watermelon']all

all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False外都算True。注意:空元组、空列表返回值为True。

all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0

True

all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素

False

all([0, 1,2, 3]) # 列表list,存在一个为0的元素

False

all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0

True

all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素

False

all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素

False

all([]) # 空列表

True

all(()) # 空元组

Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False。如果全为空,0,False,则返回False;如果不全为空,则返回True。

F-strings

在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:

s1='Hello'

s2='World'

print(f'{s1} {s2}!')

# Hello World!在F-strings中我们也可以执行函数:

def power(x):

return x*x

x=4

print(f'{x} * {x} = {power(x)}')

# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多,书写起来也更加简单。

本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~

Python:具名元组

collections.nametuple 是一个工厂函数,可以用来构建一个带字段名的元组,和一个有名字的类

Card = collections.nametuple('Card', ['rank', 'suit'])

可以通过字段名或位置来获取一个字段的信息

_fields返回包含这个类所有字段名称的元成

_make方法

_asdict() 把具名元组以collections.OrderedDict的形式返回

Python设计模式:工厂方法模式

工厂,大家一般能想到的是生产产品的地方, 在设计模式中,工厂可分为:简单工厂模式、工厂方法模式。 在前期推文 Python 简单工厂模式 中有关于简单工厂模式的解读。

根据工厂的抽象程度可分为:工厂方法模式、抽象工厂模式。 该模式用于封装和管理对象的创建,是一种创建型模式。

在简单工厂模式中,只提供了一个工厂类,该工厂类处于对产品类进行实例化的中心位置,它知道每一个产品对象的创建细节,并决定何时实例化哪一个产品类。

简单工厂模式最大的缺点是:当有新产品要加入到系统中时,必须修改工厂类,加入必要的处理逻辑,这违背了“开闭原则”。

在简单工厂模式中,所有的产品都是由同一个工厂创建,工厂类职责较重,业务逻辑较为复杂,具体产品与工厂类之间的耦合度高,严重影响了系统的灵活性和扩展性,而工厂方法模式则可以很好地解决这一问题。因此工厂方法模式应运而生。

(1)、工厂方法模式定义一个用于创建对象的接口,但是工厂本身并不负责创建对象,而是让子类决定将哪一个类实例化。工厂方法模式让一个类的实例化延迟到其子类。 工厂方法的创建是通过继承而不是通过实例化来完成的。

(2)、工厂方法模式就是简单工厂模式的进一步抽象。由于面向对象多态性,工厂方法模式保持了简单工厂的优点同时克服了它的缺点。工厂方法模式中,核心的工厂被提升为一个抽象类,将具体的创建工作交给他的子类完成。

这个抽象的工厂类仅规定具体工厂实现的接口,而不明确指出如何实例化一个产品类,这使得工厂方法模式允许系统在不修改原有产品结构的情况下轻松的引进新产品。

工厂方法使设计更加具有可定制性,它可以返回相同的实例或子类,而不是某种类型的对象。

前期分享的 Python 简单工厂模式 和今天分享的Python 工厂方法模式,大家在实际应用时能解决问题满足需求即可,可灵活变通,自由选择,无所谓哪种设计模式更高级。

同时无论哪种设计模式,由于可能封装了大量对象和工厂创建,当有新加入产品的需求时,需要修改已定义好的工厂相关的类,因此对于产品和工厂的扩展性不太友好,在选择使用时利弊需要权衡一下。

什么是工厂函数?Python 中工厂函数怎么理解?

看了半天答案,说了半天等于没说.

见python核心编程:工厂函数看上去有点像函数,实质上他们是类,当你调用它们时,实际上是生成了该类型的一个实例,就像工厂生产货物一样.


当前文章:python函数工厂,python 大厂
文章起源:http://cxhlcq.com/article/hccdoc.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部