如何在Python中合并numpy数组?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
成都创新互联于2013年创立,是专业互联网技术服务公司,拥有项目成都网站建设、成都做网站网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元陆丰做网站,已为上家服务,为陆丰各地企业和个人服务,联系电话:028-86922220Python的优点有哪些1、简单易用,与C/C++、Java、C# 等传统语言相比,Python对代码格式的要求没有那么严格;2、Python属于开源的,所有人都可以看到源代码,并且可以被移植在许多平台上使用;3、Python面向对象,能够支持面向过程编程,也支持面向对象编程;4、Python是一种解释性语言,Python写的程序不需要编译成二进制代码,可以直接从源代码运行程序;5、Python功能强大,拥有的模块众多,基本能够实现所有的常见功能。
Python中numpy数组的合并有很多方法,如
- np.append()
- np.concatenate()
- np.stack()
- np.hstack()
- np.vstack()
- np.dstack()
其中最泛用的是第一个和第二个。第一个可读性好,比较灵活,但是占内存大。第二个则没有内存占用大的问题。
方法一——append
parameters | introduction |
---|---|
arr | 待合并的数组的复制(特别主页是复制,所以要多耗费很多内存) |
values | 用来合并到上述数组复制的值。如果指定了下面的参数axis 的话,则这些值必须和arr 的shape一致(shape[axis]之外都相等),否则的话,则没有要求。 |
axis | 要合并的轴 |
例:
方法二——concatenate
parameters | introduction |
---|---|
*arrays | 这些数组除了在待合并的axis(默认为axis=0)上之外,必须具有相同的shape |
axis | 待合并的轴,默认为0 |
例:
看完上述内容,你们掌握如何在Python中合并numpy数组的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!