成都创新互联网站制作重庆分公司

python如何实现logistic分类算法-创新互联

小编给大家分享一下python如何实现logistic分类算法,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

成都创新互联主营曹妃甸网站建设的网络公司,主营网站建设方案,重庆APP软件开发,曹妃甸h5小程序定制开发搭建,曹妃甸网站营销推广欢迎曹妃甸等地区企业咨询

最近在看吴恩达的机器学习课程,自己用python实现了其中的logistic算法,并用梯度下降获取最优值。

logistic分类是一个二分类问题,而我们的线性回归函数

python如何实现logistic分类算法

的取值在负无穷到正无穷之间,对于分类问题而言,我们希望假设函数的取值在0~1之间,因此logistic函数的假设函数需要改造一下

python如何实现logistic分类算法

由上面的公式可以看出,0 < h(x) < 1,这样,我们可以以1/2为分界线

python如何实现logistic分类算法

cost function可以这样定义

python如何实现logistic分类算法

其中,m是样本的数量,初始时θ可以随机给定一个初始值,算出一个初始的J(θ)值,再执行梯度下降算法迭代,直到达到最优值,我们知道,迭代的公式主要是每次减少一个偏导量

python如何实现logistic分类算法

如果将J(θ)代入化简之后,我们发现可以得到和线性回归相同的迭代函数

python如何实现logistic分类算法

按照这个迭代函数不断调整θ的值,直到两次J(θ)的值差值不超过某个极小的值之后,即认为已经达到最优解,这其实只是一个相对较优的解,并不是真正的最优解。 其中,α是学习速率,学习速率越大,就能越快达到最优解,但是学习速率过大可能会让惩罚函数最终无法收敛,整个过程python的实现如下

import math

ALPHA = 0.3
DIFF = 0.00001


def predict(theta, data):
  results = []
  for i in range(0, data.__len__()):
    temp = 0
    for j in range(1, theta.__len__()):
      temp += theta[j] * data[i][j - 1]
    temp = 1 / (1 + math.e ** (-1 * (temp + theta[0])))
    results.append(temp)
  return results


def training(training_data):
  size = training_data.__len__()
  dimension = training_data[0].__len__()
  hxs = []
  theta = []
  for i in range(0, dimension):
    theta.append(1)
  initial = 0
  for i in range(0, size):
    hx = theta[0]
    for j in range(1, dimension):
      hx += theta[j] * training_data[i][j]
    hx = 1 / (1 + math.e ** (-1 * hx))
    hxs.append(hx)
    initial += (-1 * (training_data[i][0] * math.log(hx) + (1 - training_data[i][0]) * math.log(1 - hx)))
  initial /= size
  iteration = initial
  initial = 0
  counts = 1
  while abs(iteration - initial) > DIFF:
    print("第", counts, "次迭代, diff=", abs(iteration - initial))
    initial = iteration
    gap = 0
    for j in range(0, size):
      gap += (hxs[j] - training_data[j][0])
    theta[0] = theta[0] - ALPHA * gap / size
    for i in range(1, dimension):
      gap = 0
      for j in range(0, size):
        gap += (hxs[j] - training_data[j][0]) * training_data[j][i]
      theta[i] = theta[i] - ALPHA * gap / size
      for m in range(0, size):
        hx = theta[0]
        for j in range(1, dimension):
          hx += theta[j] * training_data[i][j]
        hx = 1 / (1 + math.e ** (-1 * hx))
        hxs[i] = hx
        iteration += -1 * (training_data[i][0] * math.log(hx) + (1 - training_data[i][0]) * math.log(1 - hx))
      iteration /= size
    counts += 1
  print('training done,theta=', theta)
  return theta


if __name__ == '__main__':
  training_data = [[1, 1, 1, 1, 0, 0], [1, 1, 0, 1, 0, 0], [1, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 1, 0, 0, 0, 1],
        [0, 0, 0, 0, 1, 1]]
  test_data = [[0, 1, 0, 0, 0], [0, 0, 0, 0, 1]]
  theta = training(training_data)
  res = predict(theta, test_data)
  print(res)

运行结果如下

python如何实现logistic分类算法

以上是“python如何实现logistic分类算法”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


网站题目:python如何实现logistic分类算法-创新互联
转载注明:http://cxhlcq.com/article/hdcop.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部