成都创新互联网站制作重庆分公司

nosql什么水平,NOSQL是什么意思

前端从哪里开始学

一、学习前端,你需要具备哪些素质?

主要从事网页设计、PC网站建设(电脑版网站建设)、wap网站建设(手机版网站建设)、成都响应式网站建设、程序开发、微网站、成都小程序开发等,凭借多年来在互联网的打拼,我们在互联网网站建设行业积累了丰富的成都做网站、成都网站制作、网络营销经验,集策划、开发、设计、营销、管理等多方位专业化运作于一体,具备承接不同规模与类型的建设项目的能力。

(1)如果web的任何一个元素(web界面,灵活的编程风格等)有一点吸引了你,让你着实着迷,恭喜你,有了一个完美的开始。确认一下自己是否喜欢和合适前端,而不是为了一份看起来体面而且薪水不菲的工作。

(2)不断学习,每日的积累,关注前端动态,是你跟上前端潮流的主要途径。前端的体系过于庞大,技术框架争涌而出,如果你经常抱怨累死码农的节奏,那就审视一下自己对前端的态度。

(3)主抓基础,避免盲目。前端领域知识点很多,值得学的东西也很多,聪明的人懂得花时间学习成体系的知识并且研究得足够深入,而不是盲目的看到别人用什么框架就去学什么。只停留在实践运用的阶段,到头来框架们都一个一个被淘汰,你仍在原地踏步。

(4)整理总结,先模仿后创造。将每日的积累做好规整,记录到博客也好,笔记也好。多看看牛人的源代码,等你达到了一定的层次水准,自然会得心应手。

(5)持有一颗造福前端社区的心。写一些有意思的小工具、插件,推广出去, 始终坚信,在从事前端的道路上You are not alone。

(6)要有专业人士的指导,尤其是学习前端找工作的,不要妄想自己一个人自学前端能找到工作,现在非常难,如果没有一个明白人帮你解决一下问题,会有非常多的弯路,中间很容易放弃,学习的不专业不说,最重要是浪费时间。

(7)一个好的心态和一个坚持的心很重要,很多冲着高薪的人想学习前端,但是能学到最后的没有几个,遇到困难就放弃了,这种人到处都是,就是因为有的东西难,所以他的回报才很大,我们评判一个前端开发者是什么水平,就是他解决问题的能力有多强。

二、web前端开发需要学习什么?

第1阶段:前端页面重构(4周)

内容包含了:(PC端网站布局项目、HTML5+CSS3基础项目、WebApp页面布局项目)

第2阶段:JavaScript高级程序设计(5周)

内容包含:(原生JavaScript交互功能开发项目、面向对象进阶与ES5/ES6应用项目、JavaScript工具库自主研发项目)

第3阶段:PC端全栈项目开发(3周)

内容包含:(jQuery经典交互特效开发、HTTP协议、Ajax进阶与PHP/JAVA开发项目、前端工程化与模块化应用项目、PC端网站开发项目、PC端管理信息系统前端开发项目)

第4阶段:移动端项目开发(6周)

内容包含:(Touch端项目、微信场景项目、应用Angular+Ionic开发WebApp项目、应用Vue.js开发WebApp项目、应用React.js开发WebApp项目)

第5阶段:混合(Hybrid,ReactNative)开发(1周)

内容包含:(微信小程序开发、ReactNative、各类混合应用开发)

第6阶段:NodeJS全栈开发(1周)

内容包括:(WebApp后端系统开发、一、NodeJS基础与NodeJS核心模块二、Express三、noSQL数据库)

对web前端有兴趣的小伙伴们,不妨先从web前端入门开始!B站上有很多的前端入门教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。

大数据关键技术有哪些

大数据关键技术涵盖数据存储、处理、应用等多方面的技术,根据大数据的处理过程,可将其分为大数据采集、大数据预处理、大数据存储及管理、大数据处理、大数据分析及挖掘、大数据展示等。

1、大数据采集技术

大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。

因为数据源多种多样,数据量大,产生速度快,所以大数据采集技术也面临着许多技术挑战,必须保证数据采集的可靠性和高效性,还要避免重复数据。

2、大数据预处理技术

大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。

因获取的数据可能具有多种结构和类型,数据抽取的主要目的是将这些复杂的数据转化为单一的或者便于处理的结构,以达到快速分析处理的目的。

3、大数据存储及管理技术

大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。

4、大数据处理

大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。

扩展资料:

大数据无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹。

1、制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。

2、金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。

3、汽车行业,利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。

4、互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。

5、电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。

参考资料来源:百度百科——大数据

如何正确理解CAP理论

常见的理解及分析

目前流行的、对CAP理论解释的情形是从同一数据在网络环境中的多个副本出发的。为了保证数据不会丢失,在企业级的数据管理方案中,一般必须考虑数据的冗余存储问题,而这应该是通过在网络上的其他独立物理存储节点上保留另一份、或多份数据副本来实现的(如附图所示)。因为在同一个存储节点上的数据冗余明显不能解决单点故障问题,这与通过多节点集群来提供更好的计算可用性的道理是相同的。

附图 CAP理论示意图

其实,不用做严格的证明也可以想见,如附图的情况,数据在节点A、B、C上保留了三份,如果对节点A上的数据进行了修改,然后再让客户端通过网络对该数据进行读取。那么,客户端的读取操作什么时候返回呢?

有这样两种情况:一种情况是要求节点A、B、C的三份数据完全一致后返回。也就是说,这时从任何一个网络节点读取的数据都是一样的,这就是所谓的强一致性读。很明显,这时数据读取的Latency要高一些(因为要等数据在网络中的复制),同时A、B、C三个节点中任何一个宕机,都会导致数据不可用。也就是说,要保证强一致性,网络中的副本越多,数据的可用性就越差;

另一种情况是,允许读操作立即返回,容忍B节点的读取与A节点的读取不一致的情况发生。这样一来,可用性显然得到了提高,网络中的副本也可以多一些,唯一得不到保证的是数据一致性。当然,对写操作同样也有多个节点一致性的情况,在此不再赘述。

可以看出,上述对CAP理论的解释主要是从网络上多个节点之间的读写一致性出发考虑问题的。而这一点,对于关系型数据库意味着什么呢?当然主要是指通常所说的Standby(关于分布式事务,涉及到更多考虑,随后讨论)情况。对此,在实践中我们大多已经采取了弱一致性的异步延时同步方案,以提高可用性。这种情况并不存在关系型数据库为保证C、A而放弃P的情况;而对海量数据管理的需求,关系型数据库扩展过程中所遇到的性能瓶颈,似乎也并不是CAP理论中所描述的那种原因造成的。那么,上述流行的说法中所描述的关系型数据库为保证C、A而牺牲P到底是在指什么呢?

因此,如果根据现有的大多数资料对CAP理论的如上解释,即只将其当作分布式系统中多个数据副本之间的读写一致性问题的通用理论对待,那么就可以得出结论:CAP既适用于NoSQL数据库,也适用于关系型数据库。它是NoSQL数据库、关系型数据库,乃至一切分布式系统在设计数据多个副本之间读写一致性问题时需要遵循的共同原则。

更深入的探究:两种重要的分布式场景

在本文中我们要说的重点与核心是:关于对CAP理论中一致性C的理解,除了上述数据副本之间的读写一致性以外,分布式环境中还有两种非常重要的场景,如果不对它们进行认识与讨论,就永远无法全面地理解CAP,当然也就无法根据CAP做出正确的解释。但可惜的是,目前为止却很少有人提及这两种场景:那就是事务与关联。

先来看看分布式环境中的事务场景。我们知道,在关系型数据库的事务操作遵循ACID原则,其中的一致性C,主要是指一个事务中相关联的数据在事务操作结束后是一致的。所谓ACID原则,是指在写入/异动资料的过程中,为保证交易正确可靠所必须具备的四个特性:即原子性(Atomicity,或称不可分割性)、一致性(Consistency)、隔离性(Isolation,又称独立性)和持久性(Durability)。

例如银行的一个存款交易事务,将导致交易流水表增加一条记录。同时,必须导致账户表余额发生变化,这两个操作必须是一个事务中全部完成,保证相关数据的一致性。而前文解释的CAP理论中的C是指对一个数据多个备份的读写一致性。表面上看,这两者不是一回事,但实际上,却是本质基本相同的事物:数据请求会等待多个相关数据操作全部完成才返回。对分布式系统来讲,这就是我们通常所说的分布式事务问题。

众所周知,分布式事务一般采用两阶段提交策略来实现,这是一个非常耗时的复杂过程,会严重影响系统效率,在实践中我们尽量避免使用它。在实践过程中,如果我们为了扩展数据容量将数据分布式存储,而事务的要求又完全不能降低。那么,系统的可用性一定会大大降低,在现实中我们一般都采用对这些数据不分散存储的策略。

当然,我们也可以说,最常使用的关系型数据库,因为这个原因,扩展性(分区可容忍性P)受到了限制,这是完全符合CAP理论的。但同时我们应该意识到,这对NoSQL数据库也是一样的。如果NoSQL数据库也要求严格的分布式事务功能,情况并不会比关系型数据库好多少。只是在NoSQL的设计中,我们往往会弱化甚至去除事务的功能,该问题才表现得不那么明显而已。

因此,在扩展性问题上,如果要说关系型数据库是为了保证C、A而牺牲P,在尽量避免分布式事务这一点上来看,应该是正确的。也就是说:关系型数据库应该具有强大的事务功能,如果分区扩展,可用性就会降低;而NoSQL数据库干脆弱化甚至去除了事务功能,因此,分区的可扩展性就大大增加了。

再来看看分布式环境中的关联场景。初看起来,关系型数据库中常用的多表关联操作与CAP理论就更加不沾边了。但仔细考虑,也可以用它来解释数据库分区扩展对关联所带来的影响。对一个数据库来讲,采用了分区扩展策略来扩充容量,数据分散存储了,很显然多表关联的性能就会下降,因为我们必须在网络上进行大量的数据迁移操作,这与CAP理论中数据副本之间的同步操作本质上也是相同的。

因此,如果要保证系统的高可用性,需要同时实现强大的多表关系操作的关系型数据库在分区可扩展性上就遇到了极大的限制(即使是那些采用了各种优秀解决方案的MPP架构的关系型数据库,如TeraData,Netezza等,其水平可扩展性也是远远不如NoSQL数据库的),而NoSQL数据库则干脆在设计上弱化甚至去除了多表关联操作。那么,从这一点上来理解“NoSQL数据库是为了保证A与P,而牺牲C”的说法,也是可以讲得通的。当然,我们应该理解,关联问题在很多情况下不是并行处理的优点所在,这在很大程度上与Amdahl定律相符合。

所以,从事务与关联的角度来关系型数据库的分区可扩展性为什么受限的原因是最为清楚的。而NoSQL数据库也正是因为弱化,甚至去除了像事务与关联(全面地讲,其实还有索引等特性)等在分布式环境中会严重影响系统可用性的功能,才获得了更好的水平可扩展性。

那么,如果将事务与关联也纳入CAP理论中一致性C的范畴的话,问题就很清楚了:关于“关系型数据库为了保证一致性C与可用性A,而不得不牺牲分区可容忍性P”的说法便是正确的了。但关于“NoSQL选择了C与P,或者A与P”的说法则是错误的,所有的NoSQL数据库在设计策略的大方向上都是选择了A与P(虽然对同一数据多个副本的读写一致性问题的设计各有不同),从来没有完全选择C与P的情况存在。

结论

现在看来,如果理解CAP理论只是指多个数据副本之间读写一致性的问题,那么它对关系型数据库与NoSQL数据库来讲是完全一样的,它只是运行在分布式环境中的数据管理设施在设计读写一致性问题时需要遵循的一个原则而已,却并不是NoSQL数据库具有优秀的水平可扩展性的真正原因。而如果将CAP理论中的一致性C理解为读写一致性、事务与关联操作的综合,则可以认为关系型数据库选择了C与A,而NoSQL数据库则全都是选择了A与P,但并没有选择C与P的情况存在。这才是用CAP理论来支持NoSQL数据库设计正确认识。

其实,这种认识正好与被广泛认同的NoSQL的另一个理论基础相吻合,即与ACID对着干的BASE(基本可用性、软状态与最终一致性)。因为BASE的含义正好是指“NoSQL数据库设计可以通过牺牲一定的数据一致性和容错性来换取高性能的保持甚至提高”,即NoSQL数据库都应该是牺牲C来换取P,而不是牺牲A。可用性A正好是所有NoSQL数据库都普遍追求的特性。


当前题目:nosql什么水平,NOSQL是什么意思
当前链接:http://cxhlcq.com/article/hddpgj.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部