1. 不同类型的参数简述
创新互联建站是一家专业从事成都做网站、成都网站设计、网页设计的品牌网络公司。如今是成都地区具影响力的网站设计公司,作为专业的成都网站建设公司,创新互联建站依托强大的技术实力、以及多年的网站运营经验,为您提供专业的成都网站建设、营销型网站建设及网站设计开发服务!
#这里先说明python函数调用得语法为:
复制代码
代码如下:
func(positional_args,
keyword_args,
*tuple_grp_nonkw_args,
**dict_grp_kw_args)
#为了方便说明,之后用以下函数进行举例
def test(a,b,c,d,e):
print a,b,c,d,e
举个例子来说明这4种调用方式得区别:
复制代码
代码如下:
#
#positional_args方式
test(1,2,3,4,5)
1 2 3 4 5
#这种调用方式的函数处理等价于
a,b,c,d,e = 1,2,3,4,5
print a,b,c,d,e
#
#keyword_args方式
test(a=1,b=3,c=4,d=2,e=1)
1 3 4 2 1
#这种处理方式得函数处理等价于
a=1
b=3
c=4
d=2
e=1
print a,b,c,d,e
#
#*tuple_grp_nonkw_args方式
x = 1,2,3,4,5
test(*x)
1 2 3 4
5
#这种方式函数处理等价于
复制代码
代码如下:
a,b,c,d,e = x
a,b,c,d,e
#特别说明:x也可以为dict类型,x为dick类型时将键传递给函数
y
{'a': 1,
'c': 6, 'b': 2, 'e': 1, 'd': 1}
test(*y)
a c b e d
#
#**dict_grp_kw_args方式
y
{'a': 1, 'c': 6, 'b': 2, 'e': 1, 'd': 1}
test(**y)
1 2 6
1 1
#这种函数处理方式等价于
a = y['a']
b = y['b']
... #c,d,e不再赘述
a,b,c,d,e
2.
不同类型参数混用需要注意的一些细节
接下来说明不同参数类型混用的情况,要理解不同参数混用得语法需要理解以下几方面内容.
首先要明白,函数调用使用参数类型必须严格按照顺序,不能随意调换顺序,否则会报错. 如 (a=1,2,3,4,5)会引发错误,;
(*x,2,3)也会被当成非法.
其次,函数对不同方式处理的顺序也是按照上述的类型顺序.因为#keyword_args方式和**dict_grp_kw_args方式对参数一一指定,所以无所谓顺序.所以只需要考虑顺序赋值(positional_args)和列表赋值(*tuple_grp_nonkw_args)的顺序.因此,可以简单理解为只有#positional_args方式,#*tuple_grp_nonkw_args方式有逻辑先后顺序的.
最后,参数是不允许多次赋值的.
举个例子说明,顺序赋值(positional_args)和列表赋值(*tuple_grp_nonkw_args)的逻辑先后关系:
复制代码
代码如下:
#只有在顺序赋值,列表赋值在结果上存在罗辑先后关系
#正确的例子1
x =
{3,4,5}
test(1,2,*x)
1 2 3 4 5
#正确的例子2
test(1,e=2,*x)
1 3 4 5 2
#错误的例子
test(1,b=2,*x)
Traceback (most recent call
last):
File "stdin", line 1, in module
TypeError: test()
got multiple values for keyword argument 'b'
#正确的例子1,处理等价于
a,b = 1,2 #顺序参数
c,d,e = x #列表参数
print a,b,c,d,e
#正确的例子2,处理等价于
a = 1 #顺序参数
e = 2 #关键字参数
b,c,d = x #列表参数
#错误的例子,处理等价于
a = 1 #顺序参数
b = 2 #关键字参数
b,c,d = x
#列表参数
#这里由于b多次赋值导致异常,可见只有顺序参数和列表参数存在罗辑先后关系
函数声明区别
理解了函数调用中不同类型参数得区别之后,再来理解函数声明中不同参数得区别就简单很多了.
1. 函数声明中的参数类型说明
函数声明只有3种类型, arg, *arg , **arg 他们得作用和函数调用刚好相反.
调用时*tuple_grp_nonkw_args将列表转换为顺序参数,而声明中的*arg的作用是将顺序赋值(positional_args)转换为列表.
调用时**dict_grp_kw_args将字典转换为关键字参数,而声明中**arg则反过来将关键字参数(keyword_args)转换为字典.
特别提醒:*arg
和 **arg可以为空值.
以下举例说明上述规则:
复制代码
代码如下:
#arg, *arg和**arg作用举例
def
test2(a,*b,**c):
print a,b,c
#
#*arg 和
**arg可以不传递参数
test2(1)
1 () {}
#arg必须传递参数
test2()
Traceback (most recent call last):
File "stdin", line 1,
in module
TypeError: test2() takes at least 1 argument (0 given)
#
#*arg将顺positional_args转换为列表
test2(1,2,[1,2],{'a':1,'b':2})
1 (2, [1, 2], {'a': 1, 'b': 2})
{}
#该处理等价于
a = 1 #arg参数处理
b = 2,[1,2],{'a':1,'b':2} #*arg参数处理
c =
dict() #**arg参数处理
print a,b,c
#
#**arg将keyword_args转换为字典
test2(1,2,3,d={1:2,3:4}, c=12, b=1)
1 (2, 3) {'c': 12, 'b': 1, 'd': {1: 2, 3:
4}}
#该处理等价于
a = 1 #arg参数处理
b= 2,3 #*arg参数处理
#**arg参数处理
c =
dict()
c['d'] = {1:2, 3:4}
c['c'] = 12
c['b'] = 1
a,b,c
2. 处理顺序问题
函数总是先处理arg类型参数,再处理*arg和**arg类型的参数.
因为*arg和**arg针对的调用参数类型不同,所以不需要考虑他们得顺序.
复制代码
代码如下:
def test2(a,*b,**c):
a,b,c
test2(1, b=[1,2,3], c={1:2, 3:4},a=1)
Traceback (most
recent call last):
File "stdin", line 1, in
module
TypeError: test2() got multiple values for keyword argument
'a'
#这里会报错得原因是,总是先处理arg类型得参数
#该函数调用等价于
#处理arg类型参数:
a = 1
a = 1
#多次赋值,导致异常
#处理其他类型参数
...
print a,b,c
def foo(x,y):
... def bar():
x,y
... return bar
...
#查看func_closure的引用信息
a =
[1,2]
b = foo(a,0)
b.func_closure[0].cell_contents
[1, 2]
b.func_closure[1].cell_contents
b()
[1, 2] 0
#可变对象仍然能被修改
a.append(3)
b.func_closure[0].cell_contents
[1, 2, 3]
b()
[1, 2, 3] 0
Python函数的参数类型主要包括必选参数、可选参数、可变参数、位置参数和关键字参数,本文介绍一下他们的定义以及可变数据类型参数传递需要注意的地方。
必选参数(Required arguments)是必须输入的参数,比如下面的代码,必须输入2个参数,否则就会报错:
其实上面例子中的参数 num1和num2也属于关键字参数,比如可以通过如下方式调用:
执行结果:
可选参数(Optional arguments)可以不用传入函数,有一个默认值,如果没有传入会使用默认值,不会报错。
位置参数(positional arguments)根据其在函数定义中的位置调用,下面是pow()函数的帮助信息:
x,y,z三个参数的的顺序是固定的,并且不能使用关键字:
输出:
在上面的pow()函数帮助信息中可以看到位置参数后面加了一个反斜杠 / ,这是python内置函数的语法定义,Python开发人员不能在python3.8版本之前的代码中使用此语法。但python3.0到3.7版本可以使用如下方式定义位置参数:
星号前面的参数为位置参数或者关键字参数,星号后面是强制关键字参数,具体介绍见强制关键字参数。
python3.8版本引入了强制位置参数(Positional-Only Parameters),也就是我们可以使用反斜杠 / 语法来定义位置参数了,可以写成如下形式:
来看下面的例子:
python3.8运行:
不能使用关键字参数形式赋值了。
可变参数 (varargs argument) 就是传入的参数个数是可变的,可以是0-n个,使用星号( * )将输入参数自动组装为一个元组(tuple):
执行结果:
关键字参数(keyword argument)允许将任意个含参数名的参数导入到python函数中,使用双星号( ** ),在函数内部自动组装为一个字典。
执行结果:
上面介绍的参数可以混合使用:
结果:
注意:由于传入的参数个数不定,所以当与普通参数一同使用时,必须把带星号的参数放在最后。
强制关键字参数(Keyword-Only Arguments)是python3引入的特性,可参考:。 使用一个星号隔开:
在位置参数一节介绍过星号前面的参数可以是位置参数和关键字参数。星号后面的参数都是强制关键字参数,必须以指定参数名的方式传参,如果强制关键字参数没有设置默认参数,调用函数时必须传参。
执行结果:
也可以在可变参数后面命名关键字参数,这样就不需要星号分隔符了:
执行结果:
在Python对象及内存管理机制中介绍了python中的参数传递属于对象的 引用传递 (pass by object reference),在编写函数的时候需要特别注意。
先来看个例子:
执行结果:
l1 和 l2指向相同的地址,由于列表可变,l1改变时,l2也跟着变了。
接着看下面的例子:
结果:
l1没有变化!为什么不是[1, 2, 3, 4]呢?
l = l + [4]表示创建一个“末尾加入元素 4“的新列表,并让 l 指向这个新的对象,l1没有进行任何操作,因此 l1 的值不变。如果要改变l1的值,需要加一个返回值:
结果:
下面的代码执行结果又是什么呢?
执行结果:
和第一个例子一样,l1 和 l2指向相同的地址,所以会一起改变。这个问题怎么解决呢?
可以使用下面的方式:
也可以使用浅拷贝或者深度拷贝,具体使用方法可参考Python对象及内存管理机制。这个问题在Python编程时需要特别注意。
本文主要介绍了python函数的几种参数类型:必选参数、可选参数、可变参数、位置参数、强制位置参数、关键字参数、强制关键字参数,注意他们不是完全独立的,比如必选参数、可选参数也可以是关键字参数,位置参数可以是必选参数或者可选参数。
另外,python中的参数传递属于对象的 引用传递 ,在对可变数据类型进行参数传递时需要特别注意,如有必要,使用python的拷贝方法。
参考文档:
--THE END--
1.在定义有默认参数的函数时,需要注意以下: 必传参数必须在前面,默认参数在后;
备注:python为了简化函数的调用,提供了默认参数机制,这样在调用函数时,就可以省略最后一个参数不写;设置何种参数为默认参数?一般来说,将参数值变化小的设置为默认参数。
2. 若参数为列表,且有默认值
2.1若调用方法时传该参数,则没有问题
2.2 若调用方法时不传该参数,则有问题 ,问题是:每次调用该方法时,该参数不是创建方法时的默认值,而是多次调用被修改后的列表。
Python中查看函数参数有四种方式:
1. F(arg1,arg2,…)
这是最常见的定义方式,一个函数可以定义任意个参数,每个参数间用逗号分割,用这种方式定义的函数在调用的的时候也必须在函数名后的小括号里提供个数相等的值(实际参数),而且顺序必须相同,也就是说在这种调用方式中,形参和实参的个数必须一致,而且必须一一对应,也就是说第一个形参对应这第一个实参。例如:
代码如下:
def a(x,y):print x,y
调用该函数,a(1,2)则x取1,y取2,形参与实参相对应,如果a(1)或者a(1,2,3)则会报错。
2. F(arg1,arg2=value2,…)
这种方式就是第一种的改进版,提供了默认值,例如:
代码如下:
def a(x,y=3):print x,y
调用该函数,a(1,2)同样还是x取1,y取2,但是如果a(1),则不会报错了,这个时候x还是1,y则为默认的3。上面这俩种方式,还可以更换参数位置,比如a(y=4,x=3)用这种形式也是可以的。
3. F(*arg1)
上面两种方式是有多少个形参,就传进去多少个实参,但有时候会不确定有多少个参数,则此时第三种方式就比较有用,它以一个*加上形参名的方式来表示这个函数的实参个数不定,可能为0个也可能为n个。注意一点是,不管有多少个,在函数内部都被存放在以形参名为标识符的元组中。
代码如下:
def a(*x):print x
a(1,2,3)
(1, 2, 3)
a(x=1,y=2,z=3)
Traceback (most recent call last):
File "stdin", line 1, in module
TypeError: a() got an unexpected keyword argument 'x'
4. F(**arg1)
形参名前加两个*表示,参数在函数内部将被存放在以形式名为标识符的dictionary中,这时调用函数的方法则需要采用arg1=value1,arg2=value2这样的形式。
代码如下:
def a(**x):print x
a(x=1,y=2,z=3)
{'y': 2, 'x': 1, 'z': 3} #存放在字典中
a(1,2,3) #这种调用则报错
Traceback (most recent call last):
File "stdin", line 1, in module
TypeError: a() takes exactly 0 arguments (3 given)
题主你好,
方法及相应代码见截图:
*.方法不只一种, 题主看看如果不合适请追问. 上面这种做法的好处是封装的这个函数func可以带任意多个位置参数. //就图主的问题来看, *args就够了, 如果func函数中还有关键字参数,则还需要使用**argv.
-----
希望可以帮到题主, 欢迎追问
parameter 是函数定义的参数形式
argument 是函数调用时传入的参数实体。
对于函数调用的传参模式,一般有两种:
此外,
也是关键字传参
python的函数参数定义一般来说有五种: 位置和关键字参数混合 , 仅位置参数 , 仅关键字参数 , 可变位置参数 , 可变关键字参数 。其中仅位置参数的方式仅仅是一个概念,python语法中暂时没有这样的设计。
通常我们见到的函数是位置和关键字混合的方式。
既可以用关键字又可以用位置调用
或
这种方式的定义只能使用关键字传参的模式
f(*some_list) 与 f(arg1, arg2, ...) (其中some_list = [arg1, arg2, ...])是等价的
网络模块request的request方法的设计
多数的可选参数被设计成可变关键字参数
有多种方法能够为函数定义输出:
非常晦涩
如果使用可变对象作为函数的默认参数,会导致默认参数在所有的函数调用中被共享。
例子1:
addItem方法的data设计了一个默认参数,使用不当会造成默认参数被共享。
python里面,函数的默认参数被存在__default__属性中,这是一个元组类型
例子2:
在例子1中,默认参数是一个列表,它是mutable的数据类型,当它写进 __defauts__属性中时,函数addItem的操作并不会改变它的id,相当于 __defauts__只是保存了data的引用,对于它的内存数据并不关心,每次调用addItem,都可以修改 addItem.__defauts__中的数据,它是一个共享数据。
如果默认参数是一个imutable类型,情况将会不一样,你无法改变默认参数第一次存入的值。
例子1中,连续调用addItem('world') 的结果会是
而不是期望的