# coding = GBK
在璧山等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站设计、网站制作 网站设计制作按需定制网站,公司网站建设,企业网站建设,成都品牌网站建设,全网整合营销推广,成都外贸网站建设,璧山网站建设费用合理。
a =[1,2,3,4,5]
sum=0
b = len(a)
print("这个数组的长度为:",b)
for i in a:
sum =sum +i
print("这个数组之和为:",sum)
print("这个数组平均数为",sum/b)
或
import sys
sum = 0
cnt = 0
f = open('1.txt', 'r')
files = f.readline()
while (files ):
sum = sum + float(files .split(",")[0])
cnt = cnt + 1
files = f.readline()
print(sum / cnt)
f.close()
或者。
#!/usr/bin/env pythonimport timeimport numpy as np
dd = np.random.randint(0, 20, size=(2*1000*1000))t_start = time.clock()avg_sum1 =
0.0BlockOffset = 0 while BlockOffset len(dd):
if dd[BlockOffset + 1] = 10:
avg_sum1 += dd[BlockOffset + 1] * 0.1
else:
avg_sum1 += dd[BlockOffset + 0] * 0.01
BlockOffset += 2print('Avg: ' + str(avg_sum1 / len(dd) / 2)) print('Exe time: ' +
str(time.clock() - t_start))
扩展资料:
python 实现求和、计数、最大最小值、平均值、中位数、标准偏差、百分比。
import sys
class Stats:
def __init__(self, sequence):
# sequence of numbers we will process
# convert all items to floats for numerical processing
self.sequence = [float(item) for item in sequence]
def sum(self):
if len(self.sequence) 1:
return None
else:
return sum(self.sequence)
def count(self):
return len(self.sequence)
def min(self):
if len(self.sequence) 1:
return None
else:
return min(self.sequence)
def max(self):
if len(self.sequence) 1:
return None
else:
return max(self.sequence)
def avg(self):
if len(self.sequence) 1:
return None
else:
return sum(self.sequence) / len(self.sequence)
def median(self):
if len(self.sequence) 1:
return None
else:
self.sequence.sort()
return self.sequence[len(self.sequence) // 2]
def stdev(self):
if len(self.sequence) 1:
return None
else:
avg = self.avg()
sdsq = sum([(i - avg) ** 2 for i in self.sequence])
stdev = (sdsq / (len(self.sequence) - 1)) ** .5
return stdev
def percentile(self, percentile):
if len(self.sequence) 1:
value = None
elif (percentile = 100):
sys.stderr.write('ERROR: percentile must be 100. you supplied: %s\n'% percentile)
value = None
else:
element_idx = int(len(self.sequence) * (percentile / 100.0))
self.sequence.sort()
value = self.sequence[element_idx]
return value
参考资料来源:百度百科-python
一、函数说明
在使用python作图时,应用最广的就是matplotlib包,但我们平时使用matplotlib时主要是画一些简单的图表,很少有涉及分段函数。本次针对数值实验中两个较为复杂的函数,使用其构建分段函数图像。
二、图像代码
2.11、函数公式:
y=4sin(4πt)-sgn(t-0.3)-sgn(0.72-t)
2.12、代码如下:
import numpy as np
import matplotlib.pyplot as plt
def sgn(x):
if x0:
return 1
elif x0:
return -1
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=4*np.sin(4*np.pi*i)-sgn(i-0.3)-sgn(0.72-i)
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("Heavsine")
plt.show()
2.13、运行结果如下:
81036331d721706ae12808beb99b9574.png
2.21、函数公式:
479029.html
2.22、代码如下:
import numpy as np
import matplotlib.pyplot as plt
def g(x):
if x0:
return x
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=g(i*(1-i))*np.sin((2*np.pi*1.05)/(i+0.05))
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("TimeSine")
plt.show()
【常见的内置函数】
1、enumerate(iterable,start=0)
是python的内置函数,是枚举、列举的意思,对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),enumerate将其组成一个索引序列,利用它可以同时获得索引和值。
2、zip(*iterables,strict=False)
用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用*号操作符,可以将元组解压为列表。
3、filter(function,iterable)
filter是将一个序列进行过滤,返回迭代器的对象,去除不满足条件的序列。
4、isinstance(object,classinfo)
是用来判断某一个变量或者是对象是不是属于某种类型的一个函数,如果参数object是classinfo的实例,或者object是classinfo类的子类的一个实例,
返回True。如果object不是一个给定类型的的对象, 则返回结果总是False
5、eval(expression[,globals[,locals]])
用来将字符串str当成有效的表达式来求值并返回计算结果,表达式解析参数expression并作为Python表达式进行求值(从技术上说是一个条件列表),采用globals和locals字典作为全局和局部命名空间。
【常用的句式】
1、format字符串格式化
format把字符串当成一个模板,通过传入的参数进行格式化,非常实用且强大。
2、连接字符串
常使用+连接两个字符串。
3、if...else条件语句
Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块。其中if...else语句用来执行需要判断的情形。
4、for...in、while循环语句
循环语句就是遍历一个序列,循环去执行某个操作,Python中的循环语句有for和while。
5、import导入其他脚本的功能
有时需要使用另一个python文件中的脚本,这其实很简单,就像使用import关键字导入任何模块一样。
列表中的数据种类很多,有字符串,有整型,有其他列表的嵌套,还有更多的数据类型,这些数据在列表中往往是错乱的,没有一定的逻辑关系,但是我们在使用列表的时候往往需要按照一定的逻辑关系进行调用或检索。下面就来看看 列表是如何排序和翻转的 ,所谓翻转也就是把既定列表倒序排列。
返回结果:
从上面的返回结果可以看出来,sort()函数如果遇到字符串是按照首字母顺序进行排列的,如果遇到浮点型数据还是按照大小排列。
由上面的结果可以看出来,不同的数据类型是没有办法进行排列的。
这个方法是把原列表中的元素顺序从左至右的重新存放,而不会对列表中的参数进行排序整理。如果需要对列表中的参数进行整理,就需要用到列表的另一种排序方式sort正序排序。
range()函数的用法如下:
(1)range(stop)
创建一个(0,stop)之间的整数序列,步长为1。
(2)range(start,stop)
创建一个(start,stop)之间的整数序列,步长为1。
(3)range(start,stop,step)
创建一个[start,stop)之间的整数序列,步长为step。
参数介绍:
start:表示从返回序列的起始编号,默认情况下从0开始。
stop:表示生成最多但不包括此数字的数字。
step:指的是序列中每个数字之间的差异,默认值为1。
range()是Python的内置函数,在用户需要执行特定次数的操作时使用它,表示循环的意思。内置函数range()可用于以列表的形式生成数字序列。在range()函数中最常见用法是使用for和while循环迭代序列类型(List,string等)。
简单的来说,range()函数允许用户在给定范围内生成一系列数字。根据用户传递给函数的参数数量,用户可以决定该系列数字的开始和结束位置以及一个数字与下一个数字之间的差异有多大。