成都创新互联网站制作重庆分公司

使用Opencv怎么实现一个图片油画特效-创新互联

这期内容当中小编将会给大家带来有关使用Opencv怎么实现一个图片油画特效,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

创新互联建站从2013年成立,先为昌江黎族等服务建站,昌江黎族等地企业,进行企业商务咨询服务。为昌江黎族企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

代码实现

首先导入包:

import numpy as np
import cv2

读取原图,得到原图的宽高信息:

img=cv2.imread('ziliao/image00.JPG',1)
imInfo=img.shape
height=imInfo[0]
width=imInfo[1]

完成彩色图片向灰度图片的转化:

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
'''该函数用于颜色的转换,第一个参数为待处理的原图,
第二个参数表示转换的颜色'''

本实例中将图片分割为若干个8×8的小方块,将0-255的灰度值分为8个等级,下面定义了一个数组array1来装载这8个等级中的像素个数,然后找出每个小方块中包含最多像素的等级,如下:

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dst=np.zeros((height,width,3),np.uint8)
for i in range(4,height-4):
  for j in range(4,width-4):
    array1 = np.zeros(8, np.uint8) #用于存储每个灰度等级的像素个数
    for m in range(-4, 4): #计算8*8小方块中的array1的值
      for n in range(-4,4):
        p1 = int(gray[i + m, j + n] / 32) #除以32得到该点应该位于第几个灰度等级
        array1[p1] = array1[p1] + 1
    currentMax = array1[0]
    l = 0

    for k in range(0,8): #找到像素点最多的那个灰度等级
      if currentMax=(l*32) and gray[i+m,j+n]<=((l+1)*32):
          (b,g,r) = img[i+m,j+n]
    dst[i,j] = (b,g,r)
cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)

三、运行结果

左为原图

使用Opencv怎么实现一个图片油画特效

四、完整代码

import numpy as np
import cv2

img=cv2.imread('ziliao/image00.png',1)
imInfo=img.shape
height=imInfo[0]
width=imInfo[1]

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dst=np.zeros((height,width,3),np.uint8)
for i in range(4,height-4):
  for j in range(4,width-4):
    array1 = np.zeros(8, np.uint8)
    for m in range(-4, 4):
      for n in range(-4,4):
        p1 = int(gray[i + m, j + n] / 32)
        array1[p1] = array1[p1] + 1
    currentMax = array1[0]
    l = 0

    for k in range(0,8):
      if currentMax=(l*32) and gray[i+m,j+n]<=((l+1)*32):
          (b,g,r) = img[i+m,j+n]
    dst[i,j] = (b,g,r)
cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)

上述就是小编为大家分享的使用Opencv怎么实现一个图片油画特效了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注创新互联行业资讯频道。


分享名称:使用Opencv怎么实现一个图片油画特效-创新互联
分享路径:http://cxhlcq.com/article/hjggo.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部