本篇文章给大家分享的是有关怎么tensor的名字获取对应变量的值,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
创新互联2013年至今,先为荆州等服务建站,荆州等地企业,进行企业商务咨询服务。为荆州企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。需求:
有时候使用slim这种封装好的工具,或者是在做滑动平均时,系统会帮你自动建立一些变量,但是这些变量只有名字,而没有显式的变量名,所以这个时候我们需要使用那个名字来获取其对应的值。
如下:
input = np.random.randn(4,3) net = slim.fully_connected(input,2,weights_initializer=tf.ones_initializer(dtype = tf.float32))
这段代码看似简单,但其实帮你生成了一个w和一个b。如果你运行下面代码:
with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for v in tf.global_variables(): print(v)
你会发现里面还有
这样两个变量,但是由于没有显式声明,所以我们要从其名字取值。
解决方案:
1、从图里面取值:
print(sess.run(tf.get_default_graph().get_tensor_by_name("fully_connected/weights:0")))
这个就是先拿到图,然后从图里面取变量 。
2、直接取值
print(sess.run("fully_connected/weights:0"))
直接把名字传进run里面就可以直接运行了,但是这个仍然拿不到变量,这个只能拿到变量值。
以上就是怎么tensor的名字获取对应变量的值,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。