成都创新互联网站制作重庆分公司

nosql时间排序,mysql时间排序

高并发,你真的理解透彻了吗?

高并发,几乎是每个程序员都想拥有的经验。原因很简单:随着流量变大,会遇到各种各样的技术问题,比如接口响应超时、CPU load升高、GC频繁、死锁、大数据量存储等等,这些问题能推动我们在技术深度上不断精进。

为安丘等地区用户提供了全套网页设计制作服务,及安丘网站建设行业解决方案。主营业务为成都网站制作、网站建设、安丘网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

在过往的面试中,如果候选人做过高并发的项目,我通常会让对方谈谈对于高并发的理解,但是能系统性地回答好此问题的人并不多。

大概分成这样几类:

1、对数据化的指标没有概念 :不清楚选择什么样的指标来衡量高并发系统?分不清并发量和QPS,甚至不知道自己系统的总用户量、活跃用户量,平峰和高峰时的QPS和TPS等关键数据。

3、理解片面,把高并发设计等同于性能优化 :大谈并发编程、多级缓存、异步化、水平扩容,却忽视高可用设计、服务治理和运维保障。

4、掌握大方案,却忽视最基本的东西 :能讲清楚垂直分层、水平分区、缓存等大思路,却没意识去分析数据结构是否合理,算法是否高效,没想过从最根本的IO和计算两个维度去做细节优化。

这篇文章,我想结合自己的高并发项目经验,系统性地总结下高并发需要掌握的知识和实践思路,希望对你有所帮助。内容分成以下3个部分:

高并发意味着大流量,需要运用技术手段抵抗流量的冲击,这些手段好比操作流量,能让流量更平稳地被系统所处理,带给用户更好的体验。

我们常见的高并发场景有:淘宝的双11、春运时的抢票、微博大V的热点新闻等。除了这些典型事情,每秒几十万请求的秒杀系统、每天千万级的订单系统、每天亿级日活的信息流系统等,都可以归为高并发。

很显然,上面谈到的高并发场景,并发量各不相同, 那到底多大并发才算高并发呢?

1、不能只看数字,要看具体的业务场景。不能说10W QPS的秒杀是高并发,而1W QPS的信息流就不是高并发。信息流场景涉及复杂的推荐模型和各种人工策略,它的业务逻辑可能比秒杀场景复杂10倍不止。因此,不在同一个维度,没有任何比较意义。

2、业务都是从0到1做起来的,并发量和QPS只是参考指标,最重要的是:在业务量逐渐变成原来的10倍、100倍的过程中,你是否用到了高并发的处理方法去演进你的系统,从架构设计、编码实现、甚至产品方案等维度去预防和解决高并发引起的问题?而不是一味的升级硬件、加机器做水平扩展。

此外,各个高并发场景的业务特点完全不同:有读多写少的信息流场景、有读多写多的交易场景, 那是否有通用的技术方案解决不同场景的高并发问题呢?

我觉得大的思路可以借鉴,别人的方案也可以参考,但是真正落地过程中,细节上还会有无数的坑。另外,由于软硬件环境、技术栈、以及产品逻辑都没法做到完全一致,这些都会导致同样的业务场景,就算用相同的技术方案也会面临不同的问题,这些坑还得一个个趟。

因此,这篇文章我会将重点放在基础知识、通用思路、和我曾经实践过的有效经验上,希望让你对高并发有更深的理解。

先搞清楚高并发系统设计的目标,在此基础上再讨论设计方案和实践经验才有意义和针对性。

高并发绝不意味着只追求高性能,这是很多人片面的理解。从宏观角度看,高并发系统设计的目标有三个:高性能、高可用,以及高可扩展。

1、高性能:性能体现了系统的并行处理能力,在有限的硬件投入下,提高性能意味着节省成本。同时,性能也反映了用户体验,响应时间分别是100毫秒和1秒,给用户的感受是完全不同的。

2、高可用:表示系统可以正常服务的时间。一个全年不停机、无故障;另一个隔三差五出线上事故、宕机,用户肯定选择前者。另外,如果系统只能做到90%可用,也会大大拖累业务。

3、高扩展:表示系统的扩展能力,流量高峰时能否在短时间内完成扩容,更平稳地承接峰值流量,比如双11活动、明星离婚等热点事件。

这3个目标是需要通盘考虑的,因为它们互相关联、甚至也会相互影响。

比如说:考虑系统的扩展能力,你会将服务设计成无状态的,这种集群设计保证了高扩展性,其实也间接提升了系统的性能和可用性。

再比如说:为了保证可用性,通常会对服务接口进行超时设置,以防大量线程阻塞在慢请求上造成系统雪崩,那超时时间设置成多少合理呢?一般,我们会参考依赖服务的性能表现进行设置。

再从微观角度来看,高性能、高可用和高扩展又有哪些具体的指标来衡量?为什么会选择这些指标呢?

2.2.1 性能指标

通过性能指标可以度量目前存在的性能问题,同时作为性能优化的评估依据。一般来说,会采用一段时间内的接口响应时间作为指标。

1、平均响应时间:最常用,但是缺陷很明显,对于慢请求不敏感。比如1万次请求,其中9900次是1ms,100次是100ms,则平均响应时间为1.99ms,虽然平均耗时仅增加了0.99ms,但是1%请求的响应时间已经增加了100倍。

2、TP90、TP99等分位值:将响应时间按照从小到大排序,TP90表示排在第90分位的响应时间, 分位值越大,对慢请求越敏感。

3、吞吐量:和响应时间呈反比,比如响应时间是1ms,则吞吐量为每秒1000次。

通常,设定性能目标时会兼顾吞吐量和响应时间,比如这样表述:在每秒1万次请求下,AVG控制在50ms以下,TP99控制在100ms以下。对于高并发系统,AVG和TP分位值必须同时要考虑。

另外,从用户体验角度来看,200毫秒被认为是第一个分界点,用户感觉不到延迟,1秒是第二个分界点,用户能感受到延迟,但是可以接受。

因此,对于一个 健康 的高并发系统,TP99应该控制在200毫秒以内,TP999或者TP9999应该控制在1秒以内。

2.2.2 可用性指标

高可用性是指系统具有较高的无故障运行能力,可用性 = 正常运行时间 / 系统总运行时间,一般使用几个9来描述系统的可用性。

对于高并发系统来说,最基本的要求是:保证3个9或者4个9。原因很简单,如果你只能做到2个9,意味着有1%的故障时间,像一些大公司每年动辄千亿以上的GMV或者收入,1%就是10亿级别的业务影响。

2.2.3 可扩展性指标

面对突发流量,不可能临时改造架构,最快的方式就是增加机器来线性提高系统的处理能力。

对于业务集群或者基础组件来说,扩展性 = 性能提升比例 / 机器增加比例,理想的扩展能力是:资源增加几倍,性能提升几倍。通常来说,扩展能力要维持在70%以上。

但是从高并发系统的整体架构角度来看,扩展的目标不仅仅是把服务设计成无状态就行了,因为当流量增加10倍,业务服务可以快速扩容10倍,但是数据库可能就成为了新的瓶颈。

像MySQL这种有状态的存储服务通常是扩展的技术难点,如果架构上没提前做好规划(垂直和水平拆分),就会涉及到大量数据的迁移。

因此,高扩展性需要考虑:服务集群、数据库、缓存和消息队列等中间件、负载均衡、带宽、依赖的第三方等,当并发达到某一个量级后,上述每个因素都可能成为扩展的瓶颈点。

了解了高并发设计的3大目标后,再系统性总结下高并发的设计方案,会从以下两部分展开:先总结下通用的设计方法,然后再围绕高性能、高可用、高扩展分别给出具体的实践方案。

通用的设计方法主要是从「纵向」和「横向」两个维度出发,俗称高并发处理的两板斧:纵向扩展和横向扩展。

3.1.1 纵向扩展(scale-up)

它的目标是提升单机的处理能力,方案又包括:

1、提升单机的硬件性能:通过增加内存、 CPU核数、存储容量、或者将磁盘 升级成SSD 等堆硬件的方式来提升。

2、提升单机的软件性能:使用缓存减少IO次数,使用并发或者异步的方式增加吞吐量。

3.1.2 横向扩展(scale-out)

因为单机性能总会存在极限,所以最终还需要引入横向扩展,通过集群部署以进一步提高并发处理能力,又包括以下2个方向:

1、做好分层架构:这是横向扩展的提前,因为高并发系统往往业务复杂,通过分层处理可以简化复杂问题,更容易做到横向扩展。

上面这种图是互联网最常见的分层架构,当然真实的高并发系统架构会在此基础上进一步完善。比如会做动静分离并引入CDN,反向代理层可以是LVS+Nginx,Web层可以是统一的API网关,业务服务层可进一步按垂直业务做微服务化,存储层可以是各种异构数据库。

2、各层进行水平扩展:无状态水平扩容,有状态做分片路由。业务集群通常能设计成无状态的,而数据库和缓存往往是有状态的,因此需要设计分区键做好存储分片,当然也可以通过主从同步、读写分离的方案提升读性能。

下面再结合我的个人经验,针对高性能、高可用、高扩展3个方面,总结下可落地的实践方案。

3.2.1 高性能的实践方案

1、集群部署,通过负载均衡减轻单机压力。

2、多级缓存,包括静态数据使用CDN、本地缓存、分布式缓存等,以及对缓存场景中的热点key、缓存穿透、缓存并发、数据一致性等问题的处理。

3、分库分表和索引优化,以及借助搜索引擎解决复杂查询问题。

4、考虑NoSQL数据库的使用,比如HBase、TiDB等,但是团队必须熟悉这些组件,且有较强的运维能力。

5、异步化,将次要流程通过多线程、MQ、甚至延时任务进行异步处理。

6、限流,需要先考虑业务是否允许限流(比如秒杀场景是允许的),包括前端限流、Nginx接入层的限流、服务端的限流。

7、对流量进行 削峰填谷 ,通过 MQ承接流量。

8、并发处理,通过多线程将串行逻辑并行化。

9、预计算,比如抢红包场景,可以提前计算好红包金额缓存起来,发红包时直接使用即可。

10、 缓存预热 ,通过异步 任务 提前 预热数据到本地缓存或者分布式缓存中。

11、减少IO次数,比如数据库和缓存的批量读写、RPC的批量接口支持、或者通过冗余数据的方式干掉RPC调用。

12、减少IO时的数据包大小,包括采用轻量级的通信协议、合适的数据结构、去掉接口中的多余字段、减少缓存key的大小、压缩缓存value等。

13、程序逻辑优化,比如将大概率阻断执行流程的判断逻辑前置、For循环的计算逻辑优化,或者采用更高效的算法。

14、各种池化技术的使用和池大小的设置,包括HTTP请求池、线程池(考虑CPU密集型还是IO密集型设置核心参数)、数据库和Redis连接池等。

15、JVM优化,包括新生代和老年代的大小、GC算法的选择等,尽可能减少GC频率和耗时。

16、锁选择,读多写少的场景用乐观锁,或者考虑通过分段锁的方式减少锁冲突。

上述方案无外乎从计算和 IO 两个维度考虑所有可能的优化点,需要有配套的监控系统实时了解当前的性能表现,并支撑你进行性能瓶颈分析,然后再遵循二八原则,抓主要矛盾进行优化。

3.2.2 高可用的实践方案

1、对等节点的故障转移,Nginx和服务治理框架均支持一个节点失败后访问另一个节点。

2、非对等节点的故障转移,通过心跳检测并实施主备切换(比如redis的哨兵模式或者集群模式、MySQL的主从切换等)。

3、接口层面的超时设置、重试策略和幂等设计。

4、降级处理:保证核心服务,牺牲非核心服务,必要时进行熔断;或者核心链路出问题时,有备选链路。

5、限流处理:对超过系统处理能力的请求直接拒绝或者返回错误码。

6、MQ场景的消息可靠性保证,包括producer端的重试机制、broker侧的持久化、consumer端的ack机制等。

7、灰度发布,能支持按机器维度进行小流量部署,观察系统日志和业务指标,等运行平稳后再推全量。

8、监控报警:全方位的监控体系,包括最基础的CPU、内存、磁盘、网络的监控,以及Web服务器、JVM、数据库、各类中间件的监控和业务指标的监控。

9、灾备演练:类似当前的“混沌工程”,对系统进行一些破坏性手段,观察局部故障是否会引起可用性问题。

高可用的方案主要从冗余、取舍、系统运维3个方向考虑,同时需要有配套的值班机制和故障处理流程,当出现线上问题时,可及时跟进处理。

3.2.3 高扩展的实践方案

1、合理的分层架构:比如上面谈到的互联网最常见的分层架构,另外还能进一步按照数据访问层、业务逻辑层对微服务做更细粒度的分层(但是需要评估性能,会存在网络多一跳的情况)。

2、存储层的拆分:按照业务维度做垂直拆分、按照数据特征维度进一步做水平拆分(分库分表)。

3、业务层的拆分:最常见的是按照业务维度拆(比如电商场景的商品服务、订单服务等),也可以按照核心接口和非核心接口拆,还可以按照请求源拆(比如To C和To B,APP和H5 )。

高并发确实是一个复杂且系统性的问题,由于篇幅有限,诸如分布式Trace、全链路压测、柔性事务都是要考虑的技术点。另外,如果业务场景不同,高并发的落地方案也会存在差异,但是总体的设计思路和可借鉴的方案基本类似。

高并发设计同样要秉承架构设计的3个原则:简单、合适和演进。"过早的优化是万恶之源",不能脱离业务的实际情况,更不要过度设计,合适的方案就是最完美的。

作者简介:985硕士,前亚马逊工程师,现大厂技术管理者。

java web开发缓存方案,ehcache和redis哪个更好

Ehcache在java项目广泛的使用。它是一个开源的、设计于提高在数据从RDBMS中取出来的高花费、高延迟采取的一种缓存方案。正因为Ehcache具有健壮性(基于java开发)、被认证(具有apache2.0license)、充满特色(稍后会详细介绍),所以被用于大型复杂分布式webapplication的各个节点中。1.够快Ehcache的发行有一段时长了,经过几年的努力和不计其数的性能测试,Ehcache终被设计于large,highconcurrencysystems.2.够简单开发者提供的接口非常简单明了,从Ehcache的搭建到运用运行仅仅需要的是你宝贵的几分钟。其实很多开发者都不知道自己用在用Ehcache,Ehcache被广泛的运用于其他的开源项目比如:hibernate3.够袖珍关于这点的特性,官方给了一个很可爱的名字smallfootprint,一般Ehcache的发布版本不会到2M,V2.2.3才668KB。4.够轻量核心程序仅仅依赖slf4j这一个包,没有之一!5.好扩展Ehcache提供了对大数据的内存和硬盘的存储,最近版本允许多实例、保存对象高灵活性、提供LRU、LFU、FIFO淘汰算法,基础属性支持热配置、支持的插件多6.监听器缓存管理器监听器(CacheManagerListener)和缓存监听器(CacheEvenListener),做一些统计或数据一致性广播挺好用的如何使用?够简单就是Ehcache的一大特色,自然用起来justsoeasy!redisredis是在memcache之后编写的,大家经常把这两者做比较,如果说它是个key-valuestore的话但是它具有丰富的数据类型,我想暂时把它叫做缓存数据流中心,就像现在物流中心那样,order、package、store、classification、distribute、end。现在还很流行的LAMPPHP架构不知道和redis+mysql或者redis+mongodb的性能比较(听群里的人说mongodb分片不稳定)。先说说reidis的特性1.支持持久化redis的本地持久化支持两种方式:RDB和AOF。RDB在redis.conf配置文件里配置持久化触发器,AOF指的是redis没增加一条记录都会保存到持久化文件中(保存的是这条记录的生成命令),如果不是用redis做DB用的话还会不要开AOF,数据太庞大了,重启恢复的时候是一个巨大的工程!2.丰富的数据类型redis支持String、Lists、sets、sortedsets、hashes多种数据类型,新浪微博会使用redis做nosql主要也是它具有这些类型,时间排序、职能排序、我的微博、发给我的这些功能List和sortedset的强大操作功能息息相关3.高性能这点跟memcache很想象,内存操作的级别是毫秒级的比硬盘操作秒级操作自然高效不少,较少了磁头寻道、数据读取、页面交换这些高开销的操作!这也是NOSQL冒出来的原因吧,应该是高性能是基于RDBMS的衍生产品,虽然RDBMS也具有缓存结构,但是始终在app层面不是我们想要的那么操控的。4.replicationredis提供主从复制方案,跟mysql一样增量复制而且复制的实现都很相似,这个复制跟AOF有点类似复制的是新增记录命令,主库新增记录将新增脚本发送给从库,从库根据脚本生成记录,这个过程非常快,就看网络了,一般主从都是在同一个局域网,所以可以说redis的主从近似及时同步,同事它还支持一主多从,动态添加从库,从库数量没有限制。主从库搭建,我觉得还是采用网状模式,如果使用链式(master-slave-slave-slave-slave·····)如果第一个slave出现宕机重启,首先从master接收数据恢复脚本,这个是阻塞的,如果主库数据几TB的情况恢复过程得花上一段时间,在这个过程中其他的slave就无法和主库同步了。5.更新快这点好像从我接触到redis到目前为止已经发了大版本就4个,小版本没算过。redis作者是个非常积极的人,无论是邮件提问还是论坛发帖,他都能及时耐心的为你解答,维护度很高。有人维护的话,让我们用的也省心和放心。目前作者对redis的主导开发方向是redis的集群方向。所以如果希望简单就用ehcache,如果开发任务比较复杂,希望得到比较多的支持什么的就redis

如何打造高性能大数据分析平台

1.大数据是什么?

大数据是最近IT界最常用的术语之一。然而对大数据的定义也不尽相同,所有已知的论点例如结构化的和非结构化、大规模的数据等等都不够完整。大数据系统通常被认为具有数据的五个主要特征,通常称为数据的5 Vs。分别是大规模,多样性,高效性、准确性和价值性。

据Gartner称,大规模可以被定义为“在本(地)机数据采集和处理技术能力不足以为用户带来商业价值。当现有的技术能够针对性的进行改造后来处理这种规模的数据就可以说是一个成功的大数据解决方案。

这种大规模的数据没将不仅仅是来自于现有的数据源,同时也会来自于一些新兴的数据源,例如常规(手持、工业)设备,日志,汽车等,当然包括结构化的和非结构化的数据。

据Gartner称,多样性可以定义如下:“高度变异的信息资产,在生产和消费时不进行严格定义的包括多种形式、类型和结构的组合。同时还包括以前的历史数据,由于技术的变革历史数据同样也成为多样性数据之一 “。

高效性可以被定义为来自不同源的数据到达的速度。从各种设备,传感器和其他有组织和无组织的数据流都在不断进入IT系统。由此,实时分析和对于该数据的解释(展示)的能力也应该随之增加。

根据Gartner,高效性可以被定义如下:“高速的数据流I/O(生产和消费),但主要聚焦在一个数据集内或多个数据集之间的数据生产的速率可变上”。

准确性,或真实性或叫做精度是数据的另一个重要组成方面。要做出正确的商业决策,当务之急是在数据上进行的所有分析必须是正确和准确(精确)的。

大数据系统可以提供巨大的商业价值。像电信,金融,电子商务,社交媒体等,已经认识到他们的数据是一个潜在的巨大的商机。他们可以预测用户行为,并推荐相关产品,提供危险交易预警服务,等等。

与其他IT系统一样,性能是大数据系统获得成功的关键。本文的中心主旨是要说明如何让大数据系统保证其性能。

2.大数据系统应包含的功能模块

大数据系统应该包含的功能模块,首先是能够从多种数据源获取数据的功能,数据的预处理(例如,清洗,验证等),存储数据,数据处理、数据分析等(例如做预测分析,生成在线使用建议等等),最后呈现和可视化的总结、汇总结果。

下图描述了大数据系统的这些高层次的组件:

2.1各种各样的数据源

当今的IT生态系统,需要对各种不同种类来源的数据进行分析。这些来源可能是从在线Web应用程序,批量上传或feed,流媒体直播数据,来自工业、手持、家居传感的任何东西等等。

显然从不同数据源获取的数据具有不同的格式、使用不同的协议。例如,在线的Web应用程序可能会使用SOAP / XML格式通过HTTP发送数据,feed可能会来自于CSV文件,其他设备则可能使用MQTT通信协议。

由于这些单独的系统的性能是不在大数据系统的控制范围之内,并且通常这些系统都是外部应用程序,由第三方供应商或团队提供并维护,所以本文将不会在深入到这些系统的性能分析中去。

2.2数据采集

第一步,获取数据。这个过程包括分析,验证,清洗,转换,去重,然后存到适合你们公司的一个持久化设备中(硬盘、存储、云等)。

在下面的章节中,本文将重点介绍一些关于如何获取数据方面的非常重要的技巧。请注意,本文将不讨论各种数据采集技术的优缺点。

2.3存储数据

第二步,一旦数据进入大数据系统,清洗,并转化为所需格式时,这些过程都将在数据存储到一个合适的持久化层中进行。

在下面的章节中,本文将介绍一些存储方面的最佳实践(包括逻辑上和物理上)。在本文结尾也会讨论一部分涉及数据安全方面的问题。

2.4数据处理和分析

第三步,在这一阶段中的一部分干净数据是去规范化的,包括对一些相关的数据集的数据进行一些排序,在规定的时间间隔内进行数据结果归集,执行机器学习算法,预测分析等。

在下面的章节中,本文将针对大数据系统性能优化介绍一些进行数据处理和分析的最佳实践。

2.5数据的可视化和数据展示

最后一个步骤,展示经过各个不同分析算法处理过的数据结果。该步骤包括从预先计算汇总的结果(或其他类似数据集)中的读取和用一种友好界面或者表格(图表等等)的形式展示出来。这样便于对于数据分析结果的理解。

3.数据采集中的性能技巧

数据采集是各种来自不同数据源的数据进入大数据系统的第一步。这个步骤的性能将会直接决定在一个给定的时间段内大数据系统能够处理的数据量的能力。

数据采集过程基于对该系统的个性化需求,但一些常用执行的步骤是 – 解析传入数据,做必要的验证,数据清晰,例如数据去重,转换格式,并将其存储到某种持久层。

涉及数据采集过程的逻辑步骤示如下图所示:

下面是一些性能方面的技巧:

●来自不同数据源的传输应该是异步的。可以使用文件来传输、或者使用面向消息的(MoM)中间件来实现。由于数据异步传输,所以数据采集过程的吞吐量可以大大高于大数据系统的处理能力。 异步数据传输同样可以在大数据系统和不同的数据源之间进行解耦。大数据基础架构设计使得其很容易进行动态伸缩,数据采集的峰值流量对于大数据系统来说算是安全的。

●如果数据是直接从一些外部数据库中抽取的,确保拉取数据是使用批量的方式。

●如果数据是从feed file解析,请务必使用合适的解析器。例如,如果从一个XML文件中读取也有不同的解析器像JDOM,SAX,DOM等。类似地,对于CSV,JSON和其它这样的格式,多个解析器和API是可供选择。选择能够符合需求的性能最好的。

●优先使用内置的验证解决方案。大多数解析/验证工作流程的通常运行在服务器环境(ESB /应用服务器)中。大部分的场景基本上都有现成的标准校验工具。在大多数的情况下,这些标准的现成的工具一般来说要比你自己开发的工具性能要好很多。

●类似地,如果数据XML格式的,优先使用XML(XSD)用于验证。

●即使解析器或者校等流程使用自定义的脚本来完成,例如使用java优先还是应该使用内置的函数库或者开发框架。在大多数的情况下通常会比你开发任何自定义代码快得多。

●尽量提前滤掉无效数据,以便后续的处理流程都不用在无效数据上浪费过多的计算能力。

●大多数系统处理无效数据的做法通常是存放在一个专门的表中,请在系统建设之初考虑这部分的数据库存储和其他额外的存储开销。

●如果来自数据源的数据需要清洗,例如去掉一些不需要的信息,尽量保持所有数据源的抽取程序版本一致,确保一次处理的是一个大批量的数据,而不是一条记录一条记录的来处理。一般来说数据清洗需要进行表关联。数据清洗中需要用到的静态数据关联一次,并且一次处理一个很大的批量就能够大幅提高数据处理效率。

●数据去重非常重要这个过程决定了主键的是由哪些字段构成。通常主键都是时间戳或者id等可以追加的类型。一般情况下,每条记录都可能根据主键进行索引来更新,所以最好能够让主键简单一些,以保证在更新的时候检索的性能。

●来自多个源接收的数据可以是不同的格式。有时,需要进行数据移植,使接收到的数据从多种格式转化成一种或一组标准格式。

●和解析过程一样,我们建议使用内置的工具,相比于你自己从零开发的工具性能会提高很多。

●数据移植的过程一般是数据处理过程中最复杂、最紧急、消耗资源最多的一步。因此,确保在这一过程中尽可能多的使用并行计算。

●一旦所有的数据采集的上述活动完成后,转换后的数据通常存储在某些持久层,以便以后分析处理,综述,聚合等使用。

●多种技术解决方案的存在是为了处理这种持久(RDBMS,NoSQL的分布式文件系统,如Hadoop和等)。

●谨慎选择一个能够最大限度的满足需求的解决方案。

4.数据存储中的性能技巧

一旦所有的数据采集步骤完成后,数据将进入持久层。

在本节中将讨论一些与数据数据存储性能相关的技巧包括物理存储优化和逻辑存储结构(数据模型)。这些技巧适用于所有的数据处理过程,无论是一些解析函数生的或最终输出的数据还是预计算的汇总数据等。

●首先选择数据范式。您对数据的建模方式对性能有直接的影响,例如像数据冗余,磁盘存储容量等方面。对于一些简单的文件导入数据库中的场景,你也许需要保持数据原始的格式,对于另外一些场景,如执行一些分析计算聚集等,你可能不需要将数据范式化。

●大多数的大数据系统使用NoSQL数据库替代RDBMS处理数据。

●不同的NoSQL数据库适用不同的场景,一部分在select时性能更好,有些是在插入或者更新性能更好。

●数据库分为行存储和列存储。

●具体的数据库选型依赖于你的具体需求(例如,你的应用程序的数据库读写比)。

●同样每个数据库都会根据不同的配置从而控制这些数据库用于数据库复制备份或者严格保持数据一致性。

●这些设置会直接影响数据库性能。在数据库技术选型前一定要注意。

●压缩率、缓冲池、超时的大小,和缓存的对于不同的NoSQL数据库来说配置都是不同的,同时对数据库性能的影响也是不一样的。

●数据Sharding和分区是这些数据库的另一个非常重要的功能。数据Sharding的方式能够对系统的性能产生巨大的影响,所以在数据Sharding和分区时请谨慎选择。

●并非所有的NoSQL数据库都内置了支持连接,排序,汇总,过滤器,索引等。

●如果有需要还是建议使用内置的类似功能,因为自己开发的还是不灵。

●NoSQLs内置了压缩、编解码器和数据移植工具。如果这些可以满足您的部分需求,那么优先选择使用这些内置的功能。这些工具可以执行各种各样的任务,如格式转换、压缩数据等,使用内置的工具不仅能够带来更好的性能还可以降低网络的使用率。

●许多NoSQL数据库支持多种类型的文件系统。其中包括本地文件系统,分布式文件系统,甚至基于云的存储解决方案。

●如果在交互式需求上有严格的要求,否则还是尽量尝试使用NoSQL本地(内置)文件系统(例如HBase 使用HDFS)。

●这是因为,如果使用一些外部文件系统/格式,则需要对数据进行相应的编解码/数据移植。它将在整个读/写过程中增加原本不必要的冗余处理。

●大数据系统的数据模型一般来说需要根据需求用例来综合设计。与此形成鲜明对比的是RDMBS数据建模技术基本都是设计成为一个通用的模型,用外键和表之间的关系用来描述数据实体与现实世界之间的交互。

●在硬件一级,本地RAID模式也许不太适用。请考虑使用SAN存储。

5.数据处理分析中的性能技巧

数据处理和分析是一个大数据系统的核心。像聚合,预测,聚集,和其它这样的逻辑操作都需要在这一步完成。

本节讨论一些数据处理性能方面的技巧。需要注意的是大数据系统架构有两个组成部分,实时数据流处理和批量数据处理。本节涵盖数据处理的各个方面。

●在细节评估和数据格式和模型后选择适当的数据处理框架。

●其中一些框架适用于批量数据处理,而另外一些适用于实时数据处理。

●同样一些框架使用内存模式,另外一些是基于磁盘io处理模式。

●有些框架擅长高度并行计算,这样能够大大提高数据效率。

●基于内存的框架性能明显优于基于磁盘io的框架,但是同时成本也可想而知。

●概括地说,当务之急是选择一个能够满足需求的框架。否则就有可能既无法满足功能需求也无法满足非功能需求,当然也包括性能需求。

●一些这些框架将数据划分成较小的块。这些小数据块由各个作业独立处理。协调器管理所有这些独立的子作业

●在数据分块是需要当心。

●该数据快越小,就会产生越多的作业,这样就会增加系统初始化作业和清理作业的负担。

●如果数据快太大,数据传输可能需要很长时间才能完成。这也可能导致资源利用不均衡,长时间在一台服务器上运行一个大作业,而其他服务器就会等待。

●不要忘了查看一个任务的作业总数。在必要时调整这个参数。

●最好实时监控数据块的传输。在本机机型io的效率会更高,这么做也会带来一个副作用就是需要将数据块的冗余参数提高(一般hadoop默认是3份)这样又会反作用使得系统性能下降。

●此外,实时数据流需要与批量数据处理的结果进行合并。设计系统时尽量减少对其他作业的影响。

●大多数情况下同一数据集需要经过多次计算。这种情况可能是由于数据抓取等初始步骤就有报错,或者某些业务流程发生变化,值得一提的是旧数据也是如此。设计系统时需要注意这个地方的容错。

●这意味着你可能需要存储原始数据的时间较长,因此需要更多的存储。

●数据结果输出后应该保存成用户期望看到的格式。例如,如果最终的结果是用户要求按照每周的时间序列汇总输出,那么你就要将结果以周为单位进行汇总保存。

●为了达到这个目标,大数据系统的数据库建模就要在满足用例的前提下进行。例如,大数据系统经常会输出一些结构化的数据表,这样在展示输出上就有很大的优势。

●更常见的是,这可能会这将会让用户感觉到性能问题。例如用户只需要上周的数据汇总结果,如果在数据规模较大的时候按照每周来汇总数据,这样就会大大降低数据处理能力。

●一些框架提供了大数据查询懒评价功能。在数据没有在其他地方被使用时效果不错。

●实时监控系统的性能,这样能够帮助你预估作业的完成时间。

6.数据可视化和展示中的性能技巧

精心设计的高性能大数据系统通过对数据的深入分析,能够提供有价值战略指导。这就是可视化的用武之地。良好的可视化帮助用户获取数据的多维度透视视图。

需要注意的是传统的BI和报告工具,或用于构建自定义报表系统无法大规模扩展满足大数据系统的可视化需求。同时,许多COTS可视化工具现已上市。

本文将不会对这些个别工具如何进行调节,而是聚焦在一些通用的技术,帮助您能打造可视化层。

●确保可视化层显示的数据都是从最后的汇总输出表中取得的数据。这些总结表可以根据时间短进行汇总,建议使用分类或者用例进行汇总。这么做可以避免直接从可视化层读取整个原始数据。

●这不仅最大限度地减少数据传输,而且当用户在线查看在报告时还有助于避免性能卡顿问题。

●重分利用大化可视化工具的缓存。缓存可以对可视化层的整体性能产生非常不错的影响。

●物化视图是可以提高性能的另一个重要的技术。

●大部分可视化工具允许通过增加线程数来提高请求响应的速度。如果资源足够、访问量较大那么这是提高系统性能的好办法。

●尽量提前将数据进行预处理,如果一些数据必须在运行时计算请将运行时计算简化到最小。

●可视化工具可以按照各种各样的展示方法对应不同的读取策略。其中一些是离线模式、提取模式或者在线连接模式。每种服务模式都是针对不同场景设计的。

●同样,一些工具可以进行增量数据同步。这最大限度地减少了数据传输,并将整个可视化过程固化下来。

●保持像图形,图表等使用最小的尺寸。

●大多数可视化框架和工具的使用可缩放矢量图形(SVG)。使用SVG复杂的布局可能会产生严重的性能影响。

7.数据安全以及对于性能的影响

像任何IT系统一样安全性要求也对大数据系统的性能有很大的影响。在本节中,我们讨论一下安全对大数据平台性能的影响。

– 首先确保所有的数据源都是经过认证的。即使所有的数据源都是安全的,并且没有针对安全方面的需求,那么你可以灵活设计一个安全模块来配置实现。

– 数据进过一次认证,那么就不要进行二次认证。如果实在需要进行二次认证,那么使用一些类似于token的技术保存下来以便后续继续使用。这将节省数据一遍遍认证的开销。

– 您可能需要支持其他的认证方式,例如基于PKI解决方案或Kerberos。每一个都有不同的性能指标,在最终方案确定前需要将其考虑进去。

– 通常情况下数据压缩后进入大数据处理系统。这么做好处非常明显不细说。

– 针对不同算法的效率、对cpu的使用量你需要进行比较来选出一个传输量、cpu使用量等方面均衡的压缩算法。

– 同样,评估加密逻辑和算法,然后再选择。

– 明智的做法是敏感信息始终进行限制。

– 在审计跟踪表或登录时您可能需要维护记录或类似的访问,更新等不同的活动记录。这可能需要根据不同的监管策略和用户需求个性化的进行设计和修改。

– 注意,这种需求不仅增加了数据处理的复杂度,但会增加存储成本。

– 尽量使用下层提供的安全技术,例如操作系统、数据库等。这些安全解决方案会比你自己设计开发性能要好很多。

8.总结

本文介绍了各种性能方面的技巧,这些技术性的知道可以作为打造大数据分析平台的一般准则。大数据分析平台非常复杂,为了满足这种类型系统的性能需求,需要我们从开始建设的时候进行考量。

本文介绍的技术准则可以用在大数据平台建设的各个不同阶段,包括安全如何影响大数据分析平台的性能。

nosql是什么

NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。

虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。不过现在也面临着一个严酷的事实:技术越来越成熟——以至于原来很好的NoSQL数据存储不得不进行重写,也有少数人认为这就是所谓的2.0版本。这里列出一些比较知名的工具,可以为大数据建立快速、可扩展的存储库。

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。

对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:

不需要预定义模式:不需要事先定义数据模式,预定义表结构。数据中的每条记录都可能有不同的属性和格式。当插入数据时,并不需要预先定义它们的模式。

无共享架构:相对于将所有数据存储的存储区域网络中的全共享架构。NoSQL往往将数据划分后存储在各个本地服务器上。因为从本地磁盘读取数据的性能往往好于通过网络传输读取数据的性能,从而提高了系统的性能。

弹性可扩展:可以在系统运行的时候,动态增加或者删除结点。不需要停机维护,数据可以自动迁移。

分区:相对于将数据存放于同一个节点,NoSQL数据库需要将数据进行分区,将记录分散在多个节点上面。并且通常分区的同时还要做复制。这样既提高了并行性能,又能保证没有单点失效的问题。

异步复制:和RAID存储系统不同的是,NoSQL中的复制,往往是基于日志的异步复制。这样,数据就可以尽快地写入一个节点,而不会被网络传输引起迟延。缺点是并不总是能保证一致性,这样的方式在出现故障的时候,可能会丢失少量的数据。

BASE:相对于事务严格的ACID特性,NoSQL数据库保证的是BASE特性。BASE是最终一致性和软事务。

NoSQL数据库并没有一个统一的架构,两种NoSQL数据库之间的不同,甚至远远超过两种关系型数据库的不同。可以说,NoSQL各有所长,成功的NoSQL必然特别适用于某些场合或者某些应用,在这些场合中会远远胜过关系型数据库和其他的NoSQL。

为什么大部分NoSQL不提供分布式事务

像MongoDB, Cassandra, HBase, DynamoDB, 和

Riak这些NoSQL缺乏传统的原子事务机制,所谓原子事务机制是可以保证一系列写操作要么全部完成,要么全部不会完成,不会发生只完成一系列中一两个

写操作;因为数据库不提供这种事务机制支持,开发者需要自己编写代码来确保一系列写操作的事务机制,比较复杂和测试。

这些NoSQL数据库不提供事务机制原因在于其分布式特点,一系列写操作中访问的数据可能位于不同的分区服务器,这样的事务就变成分布式事务,在分

布式事务中实现原子性需要彼此协调,而协调是耗费时间的,每台机器在一个大事务过程中必须依次确认,这就需要一种协议确保一个事务中没有任何一台机器写操

作失败。

这种协调是昂贵的,会增加延迟时间,关键问题是,当协调没有完成时,其他操作是不能读取事务中写操作结果的,这是因为事务的all-or-

nothing原理导致,万一协调过程发现某个写操作不能完成,那么需要将其他写操作成功的进行回滚。针对分布式事务的分布式协调对整体数据库性能有严重

影响,不只是吞吐量还包括延迟时间,这样大部分NoSQL数据库因为性能问题就选择不提供分布式事务。

MongoDB, Riak, HBase, 和 Cassandra提供基于单一键的事务,这是因为所有信息都和一个键key有关,这个键是存储在单个服务器上,这样基于单键的事务不会带来复杂的分布式协调。

那么看来扩展性性能和分布式事务是一对矛盾,总要有取舍?实际上是不完全是,现在完全有可能提供高扩展的性能同时提供分布式原子事务。

FIT是这样一个在分布式系统提供原子事务的策略,在fairness公平性, isolation隔离性, 和throughput吞吐量(简称FIT)可以权衡。

一个支持分布式事务的可伸缩分布式系统能够完成这三个属性中两个,公平是事务之间不会相互影响造成延迟;隔离性提供一种幻觉好像整个数据库只有它自

己一个事务,隔离性保证当任何同时发生的事务发生冲突时,能够保证彼此能看到彼此的写操作结果,因此减轻了程序员为避免事务读写冲突的强逻辑推理要求;吞

吐量是指每单元时间数据库能够并发处理多少事务。

FIT是如下进行权衡:

保证公平性fairness 和隔离性isolation, 但是牺牲吞吐量

保证公平性fairness和吞吐量, 牺牲隔离性isolation

保证隔离性isolation和吞吐量throughput, 但是牺牲公平性fairness.

牺牲公平性:放弃公平性,数据库能有更多机会降低分布式事务的成本,主要成本是分布式协调带来的,也就是说,不需要在每个事务过程内对每个机器都依

次确认事务完成,这样排队式的确认commit事务是很浪费时间的,放弃公平性,意味着可以在事务外面进行协调,这样就只是增加了协调时间,不会增加互相

冲突事务因为彼此冲突而不能运行所耽搁的时间,当系统不需要公平性时,需要根据事务的优先级或延迟等标准进行指定先后执行顺序,这样就能够获得很好的吞吐

量。

G-Store是一种放弃公平性的 Isolation-Throughput

的分布式key-value存储,支持多键事务(multi-key transactions),MongoDB 和

HBase在键key在同样分区上也支持多键事务,但是不支持跨分区的事务。

总之:传统分布式事务性能不佳的原因是确保原子性(分布式协调)和隔离性同时重叠,创建一个高吞吐量分布式事务的关键是分离这两种关注,这种分离原

子性和隔离性的视角将导致两种类型的系统,第一种选择是弱隔离性能让冲突事务并行执行和确认提交;第二个选择重新排序原子性和隔离性机制保证它们不会某个

时间重叠,这是一种放弃公平的事务执行,所谓放弃公平就是不再同时照顾原子性和隔离性了,有所倾斜,放弃高标准道德要求就会带来高自由高效率。


网页标题:nosql时间排序,mysql时间排序
本文地址:http://cxhlcq.com/article/hohpep.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部