成都创新互联网站制作重庆分公司

CNN怎么实现数字识别并改变参数

这篇文章主要讲解了“CNN怎么实现数字识别并改变参数”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“CNN怎么实现数字识别并改变参数”吧!

成都创新互联公司专注为客户提供全方位的互联网综合服务,包含不限于成都网站建设、网站建设、泽州网络推广、小程序定制开发、泽州网络营销、泽州企业策划、泽州品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;成都创新互联公司为所有大学生创业者提供泽州建站搭建服务,24小时服务热线:028-86922220,官方网址:www.cdcxhl.com

1.网络层级结构概述

Input layer: 输入数据为原始训练图像

Conv1:6 个 5 * 5 的卷积核,步长 Stride 为 1

Pooling1:卷积核 size 为 2 * 2,步长 Stride 为 2

Conv2:12 个 5 * 5 的卷积核,步长 Stride 为 1

Pooling2:卷积核 size 为 2 * 2,步长 Stride 为 2

Output layer:输出为 10 维向量

2.实验基本流程

(1)获取训练数据和测试数据

直接使用keras里面的手写数据集

from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

(2)定义网络层级结构

代码:

def get_model():

model = Sequential()

model.add(Conv2D(filters=6, kernel_size=(5, 5),strides=1,activation='relu',input_shape=(28, 28, 1)))

model.add(MaxPooling2D(pool_size=(2, 2),strides=2))

model.add(Conv2D(filters=12, kernel_size=(5, 5),strides=1,activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2),strides=2))

model.add(Flatten())

#model.add(Conv2D(filters=120, kernel_size=(5, 5),activation='relu'))

model.add(Dense(120, activation='relu'))

model.add(Dense(84, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(10, activation='softmax'))

# 编译模型,采用多分类的损失函数,优化器是Adadelta

model.compile(loss='categorical_crossentropy',

optimizer='Adadelta',

metrics=['accuracy'])

return model

(3)交叉验证

直接附上代码

def k_cross(data,target,bsize,epoch,sp):

print("------进行交叉验证------")

ans=0 #交叉验证正确率的和

kf = KFold(n_splits=sp, shuffle = True)

for train, test in kf.split(data):

model.fit(data[train], target[train],

batch_size=bsize,

epochs=epoch,

verbose=0,

validation_data=(data[test], target[test]))

score = model.evaluate(data[test], target[test], verbose=0)

ans+=score[1]

return ans/sp

3完整代码

我这里直接就3折了,太多了运行时间太长。

最后完整代码:

# -*- coding: utf-8 -*-

"""

Created on Tue Dec 10 15:42:27 2019

@author: pff

"""

from __future__ import print_function

import numpy as np

import keras

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten

from keras.layers import Conv2D, MaxPooling2D

from sklearn.model_selection import KFold

import matplotlib.pyplot as plt

def getdata():

#提取出训练集和测试集

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)

x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

# 采用one-hot编码

y_train = keras.utils.to_categorical(y_train, 10)

y_test = keras.utils.to_categorical(y_test, 10)

#将测试集和训练集合并,便于后面交叉验证

data = np.row_stack((x_train,x_test))

target = np.row_stack((y_train,y_test))

return data, target

# 构建模型

def get_model():

model = Sequential()郑州做无痛人流手术费用 http://www.zzzykdfk.com/

model.add(Conv2D(filters=6, kernel_size=(5, 5),strides=1,activation='relu',input_shape=(28, 28, 1)))

model.add(MaxPooling2D(pool_size=(2, 2),strides=2))

model.add(Conv2D(filters=12, kernel_size=(5, 5),strides=1,activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2),strides=2))

model.add(Flatten())

#model.add(Conv2D(filters=120, kernel_size=(5, 5),activation='relu'))

model.add(Dense(120, activation='relu'))

model.add(Dense(84, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(10, activation='softmax'))

# 编译模型,采用多分类的损失函数,用 Adadelta 算法做优化方法

model.compile(loss='categorical_crossentropy',

optimizer='Adadelta',

metrics=['accuracy'])

return model

def kcross(data,target,bsize,epoch,sp):

print("------进行交叉验证------")

ans=0

kf = KFold(n_splits=sp, shuffle = True)

for train, test in kf.split(data):

#print("第{}次开始".format(i+1))

model.fit(data[train], target[train],

batch_size=bsize,

epochs=epoch,

verbose=0,

validation_data=(data[test], target[test]))

score = model.evaluate(data[test], target[test], verbose=0)

ans+=score[1]

return ans/sp

#画结果图

def draw(batch_size,y,epoch):

plt.figure()

plt.rcParams['font.sans-serif']='SimHei'

plt.ylabel('正确率')

plt.xlabel('batch_size')

plt.title('不同参数下卷积神经网络数字识别图')

for i in range(len(y)):

plt.scatter(batch_size, y[i], s=30, c='r', marker='x', linewidths=1)

plt.plot(batch_size,y[i],label="epoch:"+str(epoch[i]))

plt.legend()

plt.show()

if __name__=="__main__":

data,target=getdata()

model=get_model()

'''

设置epoch和baitch_size参数

y:存储每一次的结果

'''

epoch=[1,3,5,7]

size=[50,100,150,200,250]

y=np.zeros([4,5])

for i in range(len(epoch)):

for j in range(len(size)):

print("now:",i,j)

y[i,j]=kcross(data,target,size[j],epoch[i],3)

draw(size,y,epoch)

最后得出运行结果

感谢各位的阅读,以上就是“CNN怎么实现数字识别并改变参数”的内容了,经过本文的学习后,相信大家对CNN怎么实现数字识别并改变参数这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


本文题目:CNN怎么实现数字识别并改变参数
当前地址:http://cxhlcq.com/article/iiioio.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部