成都创新互联网站制作重庆分公司

怎么用JavaScript预测鸢尾花品种

这篇文章主要介绍“怎么用JavaScript预测鸢尾花品种”,在日常操作中,相信很多人在怎么用JavaScript预测鸢尾花品种问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用JavaScript预测鸢尾花品种”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

创新互联公司的客户来自各行各业,为了共同目标,我们在工作上密切配合,从创业型小企业到企事业单位,感谢他们对我们的要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。专业领域包括网站设计制作、成都网站制作、电商网站开发、微信营销、系统平台开发。

 导入需要用到的模块
import pandas as pd
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
     读入数据
df = pd.read_csv(r"iris\YT-Django-Iris-App-3xj9B0qqps-master\iris.csv")
     将数据拆分成训练集和测试集
x = ['sepal_length','sepal_width','petal_length','petal_width']

X = df[x]
y = df['classification']

X_train, X_test, Y_train, Y_test = train_test_split(X,y,test_size=0.2,random_state=1)
 

训练数据集合测试数据集的比例是8:2

 训练模型并预测
model = SVC(gamma='auto')
model.fit(X_train,Y_train)
predictions = model.predict(X_test)
 

输入数据预测

iris = [1,1,1,1]
results = model.predict([iris])
print(results)
 

结果results是一个列表

 输出模型准确性
print(accuracy_score(Y_test,predictions))
 

运行代码得到结果为 0.966666666667

 保存模型
pd.to_pickle(model,r"new_model.pickle")
 

如果需要用这个模型可以直接读入

model = pd.read_pickle(r"new_model.pickle")
 

完整代码

import pandas as pd
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
df = pd.read_csv(r"iris\YT-Django-Iris-App-3xj9B0qqps-master\iris.csv")
print(df.head())
x = ['sepal_length','sepal_width','petal_length','petal_width']
X = df[x]
y = df['classification']
X_train, X_test, Y_train, Y_test = train_test_split(X,y,test_size=0.2,random_state=1)
model = SVC(gamma='auto')
model.fit(X_train,Y_train)
predictions = model.predict(X_test)
print(accuracy_score(Y_test,predictions))
pd.to_pickle(model,r"new_model.pickle")
model = pd.read_pickle(r"new_model.pickle")
iris = [1,1,1,1]
results = model.predict([iris])
print(results)

到此,关于“怎么用JavaScript预测鸢尾花品种”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


标题名称:怎么用JavaScript预测鸢尾花品种
网站网址:http://cxhlcq.com/article/jjjiid.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部