这篇文章主要介绍“NVM区数据备份机制是什么”,在日常操作中,相信很多人在NVM区数据备份机制是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”NVM区数据备份机制是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
创新互联建站专注为客户提供全方位的互联网综合服务,包含不限于成都网站设计、网站制作、黄山区网络推广、微信平台小程序开发、黄山区网络营销、黄山区企业策划、黄山区品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联建站为所有大学生创业者提供黄山区建站搭建服务,24小时服务热线:18980820575,官方网址:www.cdcxhl.com
NVM区主要特性是写入数据掉电不丢失,可以永久的保存数据,一般用作存放不经常修改的数据,此功能类似FLASH。向NVM区写入数据可分为3步:第一步,将目标扇区内原有数据读出到RAM中;第二步,擦除NVM目标扇区内数据;第三步,将新数据和RAM中的旧数据写入到该扇区中。基于以上写操作的特点可以看出,若执行写NVM区操作的第二步或第三步时芯片断电了,就会造成NVM区内原有数据丢失,而新数据写入失败,表现出NVM区内数据错乱的现象。虽然这只是小概率事件,但出于稳定性和产品健壮性考虑也要加入数据备份机制。
数据备份有两套基本方案,分别适用于小数据量和大数据量的应用场景。本期介绍小数据量备份方案,即要求每次更新数据量小于一个扇区大小减1,本例扇区大小256字节,因此更新数据量最大255字节。(注意:不同型号芯片NVM扇区大小会有差异,可以联系凌科技术确认)。实现思路是:从NVM区选取两块区域,每个区域的最后一字节记录该区域的操作次数。以该标志决定更新数据应选用哪个区域。依次循环操作两个区域,操作区域1的时候,区域2就充当了备份作用,反之同理。
第一次写入数据
第一步:将NVM区地址0x0000~0x00FF定义为Block1,将0x0200~0x02FF定义为Block2。
#define Block1 0x0000
#define Block2 0x0200
第二步:定义一个256字节的数组databuf和一个标志位变量cnt,并将cnt赋值0。
unsigned char databuf[256];
Unsigned char cnt = 0;
第三步:将目标数据(待写入数据)拷贝到databuf数组中,并将cnt+1拷贝到databuf+255的位置。
databuf[255] = cnt+1;
第四步:调用WriteNVM函数向Block1写入数据databuf,写入长度256字节。调用WriteNVM函数向Block2+255位置写入cnt,写入长度1字节
WriteNVM(Block1,databuf,256);
WriteNVM(Block2+255,&cnt,1);
更新数据
第一步:调用ReadNVM函数分别读取Block1和Block2的标志位(最后一字节)。
unsigned char flag1,flag2;
ReadNVM(Block1+255,&flag1,1);
ReadNVM(Block2+255,&flag2,1);
第二步:判断两个Block的标志位大小,选取标志位数值小的Block进行更新。将目标数据(待写入数据)拷贝到databuf数组中,并将标志位加2后拷贝到databuf+255的位置。
if(flag1 > flag2)
{
cnt = flag2 + 2;
databuf[255] = cnt;
WriteNVM(Block2,databuf,256);
}else{
cnt = flag1 +2;
databuf[255] = cnt;
WriteNVM(Block1,databuf,256);
}
读取数据
第一步:读取Block1和Block2的标志位数据。
ReadNVM(Block1+255,&flag1,1);
ReadNVM(Block2+255,&flag2,1);
第二步:判断标志位大小,数值大的Block内为新数据,数值小的Block内为旧数据。
if(flag1 > flag2)
{
ReadNVM(Block1,databuf,255);
}else{
ReadNVM(Block2,databuf,255);
}
到此,关于“NVM区数据备份机制是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!